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Abstract
Many efforts are devoted to predicting congestion
evolution using propagation patterns that are mined
from historical traffic data. However, the predic-
tion quality is limited to the intrinsic properties that
are present in the mined patterns. In addition, these
mined patterns frequently fail to sufficiently cap-
ture many realistic characteristics of true conges-
tion evolution. In this paper, we propose a repre-
sentation learning framework to characterize and
predict congestion evolution between any pair of
road segments. Specifically, we build dynamic at-
tributed networks (DAN) to incorporate both dy-
namic and static impact factors while preserving
dynamic topological structures. We propose a Deep
Meta Learning Model (DMLM) for learning repre-
sentations of road segments which support accurate
prediction of congestion evolution. DMLM relies
on matrix factorization techniques and meta-LSTM
modules to exploit temporal correlations at mul-
tiple scales, and employ meta-Attention modules
to merge heterogeneous features while learning the
time-varying impacts of both dynamic and static
features. Compared to all state-of-the-art methods,
our framework achieves significantly better predic-
tion performance on two congestion evolution be-
haviors (propagation and decay) when evaluated
using real-world dataset.

1 Introduction
Accurate prediction of congestion evolution (such as how
the congestion propagates or diminishes across road seg-
ments) benefits many traffic management applications, such
as traffic prediction [Nguyen et al., 2016], route planning,
and bottleneck identification. Existing works on conges-
tion evolution prediction typically rely on data mining tech-
niques [Nguyen et al., 2016]. In these works, pattern min-
ing is applied on historical traffic data to obtain frequent pat-
terns from causality tree/graph [An et al., 2016; An et al.,
2018]. These patterns (subtrees, subgraphs) are then utilized
for congestion evolution prediction [Nguyen et al., 2016;
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Xiong et al., 2018]. The quality of such predictions is lim-
ited to the inherent properties found in the available pat-
terns. These evolution patterns usually cannot sufficiently
capture many realistic characteristics of true congestion evo-
lution such as the significant variation in spatiotemporal range
and granularity, and the asymmetric transitivity of congestion
propagations.

Factors that will impact congestion evolutions include road
characteristics (e.g., road type), Points of Interests (POIs, e.g,
school, shopping mall) [Zhang et al., 2017], and weather con-
ditions. However, existing works often do not consider the
extent of influence that these factors have on congestion evo-
lution, such as the time-varying impact of static factors (e.g.,
POIs) [Liao et al., 2018]. For example, a stadium holding
large social event (e.g. football game) is likely to cause un-
expected congestions; schools tend to affect the traffic only
during morning peak, lunch time, and evening peak hours.
In this paper, we develop methods to incorporate the above-
mentioned factors with time-varying impact on congestions
to predict the congestion evolution between any road pairs.

The contributions of our work are summarized as follows.
• We propose a representation learning framework to char-

acterize and predict congestion propagation/decay be-
tween any pair of road segments. This departs from ex-
isting methods that mostly rely on causality trees/graphs
and mining propagation patterns.

• We are the first to characterize traffic congestion evolu-
tion (propagation/decay) using dynamic attributed net-
works (DANs). Various factors with time-varying im-
pacts are incorporated into DANs as node attributes.
These include static attributes (e.g., POIs, road charac-
teristics) and dynamic attributes (e.g., traffic speed).

• We propose a Deep Meta Learning Model (DMLM) for
learning representations of road segments that support
accurate prediction of congestion evolution. Meta learn-
ing is used to learn the evolving strengths of temporal
correlations at multiple scales based on DAN attributes.
DMLM also employs meta-Attention modules to merge
heterogeneous features while learning the time-varying
impacts of both dynamic and static features.

• The performance of our framework on two congestion
evolution behaviors, congestion propagation and con-
gestion decay, is evaluated using real-world dataset. Re-



sults show that our framework significantly outperforms
all state-of-the-art methods.

2 Related Work
Traffic Congestion Evolution. Many efforts have been un-
dertaken to model congestion evolutions at three levels of
granularity, i.e., macroscopic, microscopic, and mesoscopic.
Macroscopic level formulates congestion as a cluster of like-
wise congested roads [Anwar et al., 2016; An et al., 2016],
while microscopic level studies congestion evolution among
subsections within an individual road [Sun et al., 2018;
Khajeh-Hosseini and Talebpour, 2019; Cui et al., 2019]. Our
work focuses on mesoscopic level, which associates con-
gestion with individual road segment and congestion evolu-
tion across adjacent road segments. [Nguyen et al., 2016;
Di et al., 2019; Yue et al., 2018] formulate congestion prop-
agations as directed edges from downstream to upstream
roads. Causality trees and graphs are constructed based on
the edges and data mining techniques are used to obtain fre-
quent subtrees/subgraphs as evolution patterns (e.g., decay
and propagation). Some works also considered congestion
evolution prediction based on the obtained evolution patterns.
Most works at mesoscopic level rely on tree or graph struc-
ture to mine patterns and make predictions. However, such
representation limits the design space of predictors due to the
dependency on structural patterns.
Link Prediction on Network. The core idea of congestion
propagation prediction is similar to link prediction on com-
plex networks (e.g., social networks), which predicts new re-
lationships (links). Similarity based methods, which assumes
that two nodes are similar if they in close proximity or are
connected to similar nodes, are most widely used for link pre-
diction [Martı́nez et al., 2016b]. Local similarity is learned
based on local neighborhood information [Martı́nez et al.,
2016a], while global similarity relies on the topological infor-
mation of the entire network [Lichtenwalter et al., 2010]. In
general, similarity-based methods only focus on static struc-
tural information and neglect the evolving changes in the net-
works. In practice, nodes are often affiliated with rich at-
tributes that co-evolve with network structures. As such, there
has been a lot of interest to incorporate structure informa-
tion and node attributes for link prediction [Li et al., 2018;
Zhang et al., 2018]. However, existing works typically ignore
the temporal characteristics in dynamic networks, and fail to
capture long and short term node interactions. Link predic-
tion on DANs is still currently an emerging area of research.
In this paper, we study evolution prediction that takes into
account dynamic traffic congestion networks (evolving topo-
logical structures), and their temporal characteristics (time-
varying impacts of various factors on congestion evolution).

3 Constructing Congestion Evolution
Networks

This section presents our method to construct attributed net-
works for modeling congestion evolution (propagation and
decay), as shown in Figure 1 (a). The attributed networks
capture dynamic congestion evolution using various types of

Figure 1: Main framework: (a) Modeling congestion evolution us-
ing attributed propagation/decay networks. (b) Deep Meta Learning
Model for congestion evolution prediction.

temporal links, while incorporating both static and dynamic
node attributes.
Traffic Network. The traffic network is represented as a
DAN GC = {Gt

C}, where Gt
C = {V,E,Ct}, t is time

slice (1 ≤ t ≤ T , there are T time slices in total), V =
{r1, ..., rN} is a set of N vertice (each vertex is a road seg-
ment), E = {(i, j)} is a set of undirected edges (an edge
(i, j) ∈ E indicates that ri and rj are spatially connected).
V and E capture static topology information that remains un-
changed over time. Matrix Ct ∈ {0, 1}N represents traffic
congestion of all N road segments at time t. cti is an element
in C where cti = 1 if road ri’s traffic state is congested at time
t, otherwise, cti = 0. To capture congestion propagation and
decay behaviors on the traffic network, two DANs, GP and
GD, are constructed based on GC , as shown in Figure 2.
Attributed Propagation Network. Gt

P =
(V t

P , E
t
P , AD

t
P , AS

t
P ), where set V t

p ⊆ V is a subset
of V which includes road segments involved in propagations;
Et

P = {(i, j)} is a set of directed links, (i, j) ∈ Et
P

represents a congestion propagation from ri to rj at time
t; ADt

P is a matrix of dynamic attributes associated with
set V t

P and each vertex has Fd dynamic attributes (e.g.,
traffic speed, time indicator, weather); ASt

P is a matrix of
static attributes associated with set V t

P , and each vertex has
Fs static attributes (e.g., POIs, road characteristics). The
DAN GP is constructed in the following way, as shown in
Figure. 2 (a). The congestion states at time t and t + 1 are
illustrated in the upper box, based on which a set of conges-
tion propagation paths are detected. Specifically, road r5 is
congested at time t, then road r3 and r1 become congested
from time t to time t + 1. This indicates that the congestion
on r5 propagates to r3 and r1 (similarly, r6 propagates its
congestion to r7). Formally, a path pa = 〈ri1 , .., rik , ..., riK 〉
is a propagation path if (ij , ij+1) ∈ E (1 ≤ j ≤ K − 1);
cti1 = 1, ctij = 0 and ct+1

ij
= 1(2 ≤ j ≤ K). All nodes in the

obtained propagation paths are included in set V t
P , and any

link appearing in the propagation paths is included in set Et
P .

The static attributes ASt
P contain two parts: road charac-

teristics and surrounding POIs. Road characteristics contain
road length, number of lanes, number of bus stops and traf-
fic signals, and road type, where one-hot encoding is applied
to distinguish between 19 road types (e.g., highway, primary
road, etc.). The POIs are grouped into 14 categories (Sec-
tion 5.1). The POI distribution around a road segment ri (lo-
cated in a circle area centered at the middle point of ri) is
formulated as a vector of the number of POIs in each cat-



Figure 2: Examples of constructing Gt
P , Gt

D from GC . Red and
gray dots are congested and free-flow road segments, respectively.

egory. Thus, each ri has a vector of dimension 14. The dy-
namic attributesASt

P of ri at time t contain: historical speeds
of previous W time slices; historical daily and weekly aver-
age speed at time t (long term periodicity); time indicator
such as time-of-day and day-of-week; holiday indicator (‘1’
indicates a holiday while ‘0’ otherwise); and weather con-
ditions in hourly granularity (e.g., raining, sunny, rainstorm,
etc.) represented using one-hot coding.
Attributed Decay Network. Similar to Gt

P , the DAN Gt
D =

(V t
D, E

t
D, AD

t
D, AS

t
D) is defined to capture the decay behav-

iors based on GC at time slots t− 1, t, and t+1, as shown in
Figure 2 (b). Gt−1

c contains a congestion cluster Ct
m consist-

ing of 4 congested road segments that are spatially connected.
The congestion cluster contracts over time in the following
way. Nodes 2 and 3 released their congestion states from
time t− 1 to t, then their neighboring nodes 5 and 6 released
their congestion states from time t to t + 1. In this process,
there are two congestion decay paths, i.e., r2 → r5 → r6
and r3 → r5 → r6, where nodes 2 and 3 are sources of con-
gestion decay. Formally, a path pa = 〈ri1 , .., rik , ..., riK 〉
is a decay path if (ij , ij+1) ∈ E (1 ≤ j ≤ K − 1);
ct−1ij

= 1(1 ≤ j ≤ K); cti1 = 0, ctij = 1(2 ≤ j ≤ K),
and ctij = 0(1 ≤ j ≤ K) (consequently released). With the
obtained decay paths, Gt

D can be constructed by including all
nodes of the decay paths into set V t

D and all links of the de-
cay paths into set Et

D. ADt
D and ASt

D are constructed in the
same way as ADt

P and ASt
P .

Congestion Evolution Prediction. The congestion evolution
prediction problem is formulated as a link prediction problem
on DAN: Given a DAN (e.g., GP , GD), predict the existence
of directed links from a road segment ri to rj , based on dy-
namic topological structures and diverse node attributes.

4 DMLM Model for Evolution Prediction
Figure 1 (b) shows the framework of Deep Meta-Learning
Model (DMLM) for predicting congestion evolutions, which
consists of 5 main steps: 1) Generating asymmetric initial
representation by incorporating multiple temporal correla-
tions while preserving structure and asymmetric transitivity;
2) Learning multiple evolving temporal correlations using
meta-LSTM modules based on static and dynamic node at-
tributes; 3) Learning time-varying significance for fusing het-
erogeneous features using meta-attention modules; 4)
Generating final source and target representations by fusing

learned latent features as well as their time-varying signif-
icance. 5) Predicting the propagation/decay between road
pairs based on the obtained representations. The DMLM
models for propagation prediction and decay prediction are
trained separately. In the rest of the paper, we discuss how
to build the model for propagation prediction. The model for
decay prediction is obtained in the same way.

4.1 Asymmetric Initial Representations
As the congestion propagation is inherently asymmetric, i.e.,
the possibility of propagation from ri to rj is different from
that of rj to ri, we propose to learn asymmetric representa-
tions [Ou et al., 2016; Zhou et al., 2017] for the road seg-
ments. For an APN GP , we generate a source representa-
tion epsrc

i,t and a target representation eptrg
i,t for each node ri

at time t. Then a function φ takes epsrc
i,t and eptrg

j,t as in-
put variables to predict the likelihood of existence of prop-
agation from ri and rj . Due to the asymmetric property,
φ(epsrc

i,t , ep
trg
j,t ) 6= φ(epsrc

j,t , ep
trg
i,t ) ∈ [0, 1].

Three auxiliary matrices are constructed to capture diverse
temporal dependencies of evolutions, e.g., recent depen-
dency, daily periodicity, and weekly repeatability [Sun et al.,
2019; Lv et al., 2018]. Given APN GP , we build 3 matrices
for each time slice t, i.e., recent, daily and weekly propaga-
tion trend matrices: M t

P,re, M t
P,da, and M t

P,we. Specifically,
the matrix M t

P,re, M t
P,da and M t

P,we characterize recent traf-
fic, daily periodic and weekly periodic patterns, respectively.
They are constructed as f(lx, Tx) = 1

lx

∑lx
l=1M

t−Tx∗l
P ,

where M t
P ∈ {0, 1}N×N and M t

P (i, j) = 1 when {i, j} ∈
Et

P of GP , lx is the number of previous days/weeks consid-
ered, Tx is the number of intervals per day/week (Tx = 288
for one day when the time slot is 5 minutes ). For M t

P,re,
(lx, Tx) = (6, 1), for M t

P,da, (lx, Tx) = (7, 288), and for
M t

P,we, (lx, Tx) = (6, 288 ∗ 7). The aforementioned param-
eters are based on the settings from [Guo et al., 2019].
M t

P,re, M t
P,da and M t

P,we are fed into an Non-negative
Matrix Factorization (NMF) module (as shown in Figure 3
(a)) [Lee and Seung, 2001] to generate initial representa-
tions (3 source representations and 3 target representations
corresponding to M t

P,re, M t
P,da and M t

P,we respectively).
The representations episrc,tre,i and epitrg,tre,i for ri at time t

is obtained based on M t
P,re by solving an objective func-

tion: min ‖M t
P,re − St

re(T
t
re)

T ‖2, s.t. St
re,T

t
re ≥ 0, where

episrc,tre,i ∈ RK is the ith row of matrix S ∈ RN×K , and
epitrg,tre,i is the ith row of the transposition of matrix T ∈
RK×N (i.e., (T)′). episrc,tda,i , epitrg,tda,i , episrc,twe,i , and epitrg,twe,i

are calculated in the same way.

4.2 Meta-LSTM Component
The constructed APN GP and ADN GD have included di-
verse factors (attributes), which can be used to identify im-
pressionable congestion evolutions. This section introduces
a Meta-LSTM module to learn the evolving temporal cor-
relations from multiple views. As shown in Figure 3 (b),
the Meta-LSTM component processes the source repre-
sentation part and the target representation part separately,



Figure 3: The three main components of DMLM: (a) Generating asymmetric initial representation, (b) Learning evolving temporal correla-
tions using meta-LSTM, (c) Learning time-varying significance for feature fusion using meta-attention.

using two separate modules of the same structure. Each
part has three separate meta-lstm modules, which fuse
multi-view temporal correlation information (recent, daily,
and weekly patterns) using heterogeneous weights that are
learned via meta-learning based on diverse node attributes
of APN GP . Taking meta-lstm-ws for learning source
representation based on Gt

P as an example, the inputs in-
volve three parts: representation of weekly propagation trend
episrcwe , static attributes ASP , and dynamic attributes ADP .
meta-lstm-rs produces epasrcwe ∈ RK .

As shown in Figure 3 (b), meta-lstm-we consists of
a 3-layers LSTM module lstm-l that captures long-term
and short-term dependency of dynamic attributes, a 2-layers
FCN fcn-l that captures latent impacts of static attributes,
and four meta learners for learning parameters in meta-LSTM
(i.e., lstm-e). At each time step, the lstm-l learns a
latent vector DLinf ∈ RDlml

o from node ri’s dynamic at-
tributes ADt

P (i) ∈ RFd (the i-th row of ADt
P ), which in-

corporates dynamic latent information. The fcn-l learns a
SLinf ∈ RDfml

o fromASP (i) ∈ RFs to incorporate static la-
tent information. The knowledge learned from both static and
dynamic attributes are concatenated before being fed into the
four meta-learners, i.e., hinf = DLinf ⊕ SLinf . The four
meta-learners learn weight parameters for input gate, forget
gate, cell, and output gate in lstm-emodule, based on hinf .
Based on the learned weights from meta leaners, the lstm-e
takes episrcwe as input to generate epasrcwe .

The four meta learners are of the same structure as shown
in Figure 3 (b). For example, the meta learners for output gate
(ml-lstm-o) relies on four separate 2-layers FCN modules
to learn 4 parameters for the output gate. Specifically, the
four FCN modules (i.e., fcn-wio, fcn-who, fcn-bio
and fcn-bho) take hinf as input and produce 4 parameters
Wio ∈ RK×K , Who ∈ RK×K , bio ∈ RK , and bho ∈ RK

for the output gate of lstm-e. In the same way, the pa-
rameters of lstm-e’s other three parts (input gate, forget
gate, cell) are learned using 3 meta learners. Then, lstm-e
takes episrcwe as input and produces epasrcwe based on follow-

ing equations:

it = σ(Wiixt + bii +Whiht−1 + bhi),

ft = σ(Wifxt + bif +Whfht−1 + bhf ),

gt = σ(Wigxt + big +Whght−1 + bhg),

ot = σ(Wioxt + bio +Whoht−1 + bho),

Ct = ft ◦Ct−1 + it ◦ gt,

ht = ot ◦ tanh(Ct).

where ◦ is Hadamard product, and σ is sigmoid functuion.

4.3 Meta-Attention Component
APN GP has included various factors that impact the traffic
situations. The dynamic as well as the static attributes have
time-varying impact on the congestion evolutions (as high-
lighted earlier). To capture such dynamic significance, we
designed a Meta-Attention component to merge multi-
ple temporal correlations as well as static and dynamic at-
tributes. As shown in Figure 3 (c), Meta-Attention
component relies on two separate meta-attention modules
to learn source and target representations (meta-atten-s
and meta-atten-t). In meta-atten-s, a 3-layers
LSTM layer (lstm-a) is used to learn a latent vector rep-
resentation (DLimp ∈ RDfma

o ) for dynamic attributes and
a 2-layers FCN layer (fcn-a) is used to learn a latent vec-
tor representation (SLimp ∈ RDfma

o ) for the static attributes.
Then, himp = DLimp ⊕ SLimp is fed into a meta learner,
meta-weight-s, to learn weight parameters for the atten-
tion module fcn-e. The meta learner uses two separate two-
layers FCNs, fcn-Ws and fcn-bs, to learn weight matrix
and bias terms for fcn-e. Then, fcn-e takes three initial
representations (episrcre , episrcda ,episrcwe ) together with three
attributed representations (epasrcre ,epasrcda ,epasrcwe ) as inputs,
and produces corresponding six scores aepire , aepida , aepiwe , aepare ,
aepada and aepawe based on the following equations:

ayx =
expαy

x∑
l,m expαm

l

, x, l ∈ {re, da, we}, y,m ∈ {epi, epa}.

αy
x = fcn-e(yx), x ∈ {re, da, we}, y ∈ {epi, epa}.



With the Meta-Attention module, each node in GP

obtains six attention scores for source representation learn-
ing: aepire,src, aepida,src, aepiwe,src, aepare,src, aepada,src, aepawe,src; and
six attention scores for target representation learning: aepire,trg ,
aepida,trg, aepiwe,trg, aepare,trg , aepada,trg, aepawe,trg.

4.4 Fusion and Prediction
For a road segment ri at time t in APNGP , a source represen-
tation epsrc ∈ RK and a target representation eptrg ∈ RK

are obtained via the following fusion process.

epsrc =
∑
x,y

ayx,src ∗ ysrcx , x ∈ {re, da, we}, y ∈ {epi, epa}.

eptrg =
∑
x,y

ayx,trg ∗ ytrgx , x ∈ {re, da, we}, y ∈ {epi, epa}.

The likelihood of a directed link from ri to rj is calculated
as inner product of ri’s source representation and rj’s target
representation, i.e., yp(i, j) = σ(epsrc

i · eptrg
j ), σ is sigmoid

function. There exists a link if yp(i, j) ≥ 0.5 and no link
otherwise.
Loss function. The loss function for training DMLM to predict
propagation behavior is defined as follows.

LP = − 1

n

n∑
k=1

ŷpk · ln ypk + (1− ŷpk) · ln(1− ypk)

where n is the number of samples, ypk is prediction, and ŷpk
is ground truth.

5 Experiments
5.1 Dataset
Road Network. The road network for our experiments is ob-
tained from OpenStreetMap1, which covers a rectangle area
in Downtown of Singapore (Southwest: 1.2718, 103.8002;
Northeast: 1.3323, 103.8653) consisting of 1858 road seg-
ments. The topological information and static attributes of
roads are extracted (as discussed in Section 3).
POIs. The POIs are collected from government website 2.
We group all POIs into 14 categories: shopping services, re-
ligion building, business, hotel, residence, education, food,
government, scenic spot, medical care, sports, entertainment,
bus stop, MRT station.
Traffic Data. The historical traffic speeds are calculated
based on bus trajectories derived from bus arrival data3.
Speeds are aggregated every 5 minutes. Then, a road segment
is detected as congested at a time interval if its traffic speed
is slower than a threshold value. Similar to existing works,
we tested the performance using several thresholds. For road
ri, the threshold θpi is selected as different percentiles of traf-
fic speeds of each road, denoted as p. For example, p = 90%
indicates that 90% of the road’s speed values in si are larger

1https://www.openstreetmap.org/export
2https://data.gov.sg/dataset?q=Places+of+Interest
3https://www.mytransport.sg/content/mytransport/home/dataMall

.html
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Figure 4: Impacts of model parameters.

than θpi . With this threshold, 10% of the traffic speeds will
be identified as congested in ci. In the experiments, p in
{90%, 75%, 60%} are tested for the prediction performance
under different congestion situations [Nguyen et al., 2016].
The traffic data is collected from Aug. 01 to Nov. 30, 2018,
where the data of the first 90 days (75%) is used for training
and the remaining data is used for testing.

5.2 Evaluation Metrics and Baseline Methods
Metrics. The performance of the proposed methods is evalu-
ated using metrics accuracy and F1-score.
Baselines. 1) STC [Nguyen et al., 2016] extracts frequently
appearing congestion propagation relationship by mining fre-
quent subtrees. Then, a dynamic Bayesian network is con-
structed using the obtained patterns to predict propagations.
2) Pro-Graph [Xiong et al., 2018] works on a graph struc-
ture and predicts where certain congestions will propagate
to the near future. 3) MMDNE [Lu et al., 2019] proposes
temporal embedding method to incorporate evolution of dy-
namic networks at micro- and macro-level, and predicts links
between node pairs. 4) GCN-GAN [Lei et al., 2019] con-
siders non-linear characteristics and link weights in dynamic
network leveraging on graph convolutional network (GCN),
LSTM and generative adversarial network (GAN) for link
prediction. 5) ANRL [Zhang et al., 2018] employs a neigh-
bor enhancement autoencoder to model node attributes and
a skip-gram model to formulate structure among nodes for
learning node representations. Link prediction is then per-
formed based on cosine similarity function. 6) node2bits [Jin
et al., 2019] uses a time- and attribute-aware framework to
study interactions of users in heterogeneous networks and
predict whether two users correspond to the same entity (has
a link). The first two baselines are the most recent works that
investigate congestion evolution prediction problems. Base-
lines 3) and 4) are link prediction methods considering tem-
poral dimension properties. Baseline 5) incorporates node at-
tributes but ignore properties over temporal dimension, while
baseline 6) considers both node attributes and temporal at-
tributes. We also include the ablation version of our method
by removing major components. 7) Ours-woML (without
meta-LSTM) employs the original LSTM instead of the meta-
LSTM structure. 8) Ours-woMA (without meta-Attention)



employs a widely used attention mechanism instead of the
proposed meta-Attention structure.

Table 1: Overall performance on congestion propagation prediction.

Accuracy F1-score
90% 75% 60% 90% 75% 60%

STC 0.652 0.648 0.671 0.685 0.677 0.769
Pro-Graph 0.860 0.692 0.547 0.097 0.117 0.118
MMDNE 0.487 0.504 0.496 0.396 0.403 0.469
GCN-GAN 0.503 0.501 0.508 0.014 0.004 0.034
ANRL 0.499 0.50 0.498 0.665 0.667 0.663
Node2Bits 0.518 0.542 0.534 0.635 0.675 0.667
Ours-woML 0.830 0.804 0.837 0.855 0.829 0.850
Ours-woMA 0.851 0.849 0.863 0.863 0.857 0.871
Ours (DMLM) 0.859 0.862 0.876 0.872 0.874 0.883

Table 2: Overall performance on congestion decay prediction.

Accuracy F1-score
90% 75% 60% 90% 75% 60%

MMDNE 0.375 0.434 0.397 0.319 0.314 0.318
GCN-GAN 0.501 0.503 0.501 0.003 0.003 0.003
ANRL 0.497 0.50 0.499 0.661 0.665 0.662
Node2Bits 0.489 0.487 0.487 0.154 0.305 0.274
Ours-woML 0.798 0.752 0.698 0.843 0.704 0.531
Ours-woMA 0.883 0.864 0.852 0.892 0.877 0.870
Ours (DMLM) 0.939 0.906 0.887 0.942 0.913 0.897

5.3 Experiment Setup and Hyper-parameters
We implemented the DMLM model using PyTorch
framework on Intel(R) Xeon(R) CPU E5-1650 v2 @
3.50GHz with 32G RAM. The source code is available at
https://github.com/HelenaYD/DMLM. The critical hyper-
parameters are optimized via grid search as follows. Size
of hidden layers of meta learners’s FCNs in Meta-LSTM
and Meta-Attention: D̂ml

h = 64, D̂ma
h = 8; Size

of hidden and output layers in lstm-l and lstm-a:
Dlml

h = 16, Dlml
o = 8, Dlma

h = 8, Dlma
o = 32; Size of

hidden and output layers in fcn-l and fcn-a: Dfml
h = 4,

Dfml
o = 16, Dfma

h = 4, Dfma
o = 8; and the dimension of

final representations K = 4. For decay prediction, the above
parameters are set to: 16, 16, 64, 8, 128, 8, 64, 16, 16, 8,
respectively. In addition, the learning rate is 0.0001 and the
batch size is 40.

5.4 Results and Analysis
Table 1 and Table 2 show the comparison with 6 baselines and
2 ablation versions of our method. In addition to testing the
prediction performance on congestion propagation, we also
predict the congestion decay by training another DMLM us-
ing ADN GD. The results show that our method outperforms
all the baselines in both accuracy or f1-score for both prop-
agation and decay prediction. STC and Pro-Graph are de-
signed for congestion propagation, and cannot be easily ex-
tended to decay prediction. Thus we only tested their perfor-
mance on propagation prediction. Pro-Graph obtains compa-
rable accuracy with our DMLM when p = 90% as it relies
on propagation patterns (e.g., repeatability) to make predic-
tions. As such, it produces higher accuracy for heavy con-
gestions that repeat frequently, and the accuracy decreases

rapidly with decreasing p. Both MMDNE and GCN-GAN
considered temporal dependency and structure information
but failed to obtain satisfying results. This indicates that
it is critical to incorporate diverse node attributes in addi-
tion to the temporal dependency and network structure in-
formation. On the other hand, ANRL considered node at-
tributes but ignore temporal dimension, leading to poor per-
formance. In general, the baselines produce low-quality solu-
tions because they either did not sufficiently incorporate the
spatiotemporal correlations or failed to capture the dynamic
significances of both the dynamic and static node attributes.
On the other hand, Ours-woML and Ours-woMA produce
obvious performance degradation for both propagation and
decay prediction. This demonstrates that the Meta-LSTM
and Meta-Attention modules play important roles in the
DMLM. In addition, combining NMF with diverse temporal
dependencies captures the underlying evolution trends, which
makes prediction more stable.

Figure 4 illustrates the impacts of several factors on the
prediction performance, including D̂ml

h , D̂ma
h , Dlml

h , Dlml
o ,

Dfma
h , Dfma

o , and K. These factors affect the dimensions
of intermediate feature vectors. As shown in Figure 4 (a), in-
creasing D̂ml

h and D̂ma
h first leads to perform improvement,

and then results in performance degradation. In general, fea-
ture vectors that are too short cannot sufficiently characterize
the complex correlations, while vectors that are too long not
only fail to improve representation capability, but also lead
to higher computation overhead. The parameters, e.g., Dlml

h

and Dlml
o in Figure 4 (c), Dfma

h and Dfma
o in (d), also pro-

duce similar trends (the other parameters are not shown due to
the page limit). The figure also shows that even under similar
trends, the best parameter setting for propagation prediction
is different from decay prediction.

6 Conclusion
This paper proposed methods to model and predict the like-
lihood of congestion evolution between any pair of road seg-
ments (connected via single or multiple paths). Dynamic at-
tributed networks were constructed to incorporate both dy-
namic and static impact factors while preserving dynamic
topological structures. A DMLM model was proposed to
learn representations of road segments, which enable accu-
rate prediction of congestion evolution. DMLM relies on
meta-LSTM and meta-Attention techniques to incorporate
the heterogeneous and time-varying impacts of multiple cor-
relations, and various dynamic and static node attributes. Ex-
periments on real-world datasets showed that the proposed
method achieves significantly better results than all state-of-
the-art methods.
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