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Abstract— Traffic prediction is a challenging task as the
traffic flow is influenced by many seasonal, stochastic, and struc-
tural factors. In addition, the spatial and temporal distribution
of traffic flow can induce direct and indirect congestion propa-
gation patterns. While existing works have attempted to model
spatial-temporal graphs to capture the spatial correlations
and temporal dependencies, they fail to consider congestion
propagation behavior among road segments. In this paper, we
propose a novel traffic prediction model that takes into account
the congestion propagation tendencies to improve prediction
accuracy. A novel diffusion graph convolution network model
is developed to capture the spatial traffic correlations while
considering the congestion propagation behavior. Our model
also jointly learns the importance of seasonal traffic speed
correlations, road contextual information (structural informa-
tion), and stochastic factors (external factors) through an
attention layer. Experimental results on real-world data-set
demonstrate the superiority of our method over state-of-the-
art traffic prediction techniques, and confirm the significance
of congestion propagation behavior in traffic prediction.

I. INTRODUCTION

Traffic prediction has become an essential enabler for
intelligent transportation systems due to the advancement
in traffic data collection. Short-term traffic prediction pro-
vides valuable information for many applications such as
route planning [1] and public transportation management.
However, achieving accurate prediction is challenging as the
traffic flow is influence by seasonal factors (e.g., time of
congestion, impact of weekends), stochastic factors (e.g.,
impact of weather and special events), and structural factors
(e.g., Point of Interests (POIs), road characteristics).

Many works employ spatial and temporal correlations to
predict future traffic states of a road based on seasonal
factors (i.e., its historical traffic flow and the neighboring
roads’ traffic state [2]). These works often rely on graph
convolution techniques [2] to capture spatial correlations
on graph-structured road networks, and recurrent neural
networks [3] to model temporal correlations. Existing works
also take into account stochastic and structural factors for
traffic prediction [4]. POIs, e.g., business buildings and
schools, create periodic traffic demands. Road characteristics,
e.g., road types (primary/highway) with different throughput
capacities, also directly impact traffic speed. In addition, ad-
verse weather conditions (e.g., heavy rain/snow) affect travel
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demands by influencing travel decisions, e.g., travel mode
and departure time. It is noteworthy that the significance
of these factors evolves with time, and they also impact
each other. For example, POIs such as shopping malls and
tourism areas attract higher traffic demands during holidays
with opposing trends on workdays. Therefore, a dependable
traffic prediction model must effectively incorporate the
heterogeneous factors and capture their inter-dependencies.

Besides the factors mentioned above, traffic congestion
also exhibits specific propagation behavior due to the spatial
and temporal distribution of the traffic flow [5]. Congestion
emerges on road segments where the traffic flow exceeds the
road capacity, and the congested road segments are likely
to affect its neighboring road segments. If the traffic flow
continues to increase (e.g., during daily peak hours), the
congestion propagation may exhibit a domino effect where
the congestions propagate to other spatially connected road
segments. This will last until the travel demand diminishes,
and a reverse propagation effect can be observed. While it is
evident that congestion propagation can negatively impact
the traffic states among a cluster of road segments, it is
often neglected in state-of-the-art traffic prediction works.
In this paper, we propose a Congestion Propagation aware
Traffic Prediction (CPTP) model, which jointly considers
spatial-temporal correlations of seasonal factors, structural
factors, and stochastic factors, while taking into account
congestion propagation tendencies among road segments.
Our contributions are summarized as follows:

• We develop a deep learning module to infer traffic states
based on heterogeneous feature components: diverse
seasonal temporal dependencies, structural factors (POIs
and road characteristics), and stochastic factors (weather
conditions and holidays). The evolving importance of
each feature component is learned using an attention
fusion layer.

• We improve traffic prediction accuracy by considering
congestion propagation behavior while learning spatial
correlations. Propagation probability matrices are used
to capture propagation behavior in both temporal and
spatial dimensions. Then, a novel diffusion graph con-
volution network (DGCN) is developed to learn spatial
correlations taking into account congestion propagation.

• We evaluate the performance of our proposed method
with real-world dataset of Singapore. The results show
that our method significantly outperforms state-of-the-
art methods. They also confirm the significance of
congestion propagation behavior in traffic prediction.



II. RELATED WORK
Deep learning-based traffic prediction models have

mostly attempted to capture spatial and temporal traffic
correlations [6] to achieve better prediction. Typically, graph
convolution networks are used to model spatial dependen-
cies on topological traffic network [2][7], while recurrent
networks have demonstrated their effectiveness in modeling
temporal dependencies [3][8][9]. As different traffic impact
factors exhibit varying importance on the traffic state, at-
tention mechanism has been introduced to determine the
significance among the diverse spatiotemporal feature com-
ponents [4][10][11]. However, unlike our work, most of the
existing techniques fail to consider the impact of congestion
propagation behavior on the traffic states for traffic predic-
tion. The work that is most related to ours is [12], which
builds a congestion diffusion model for traffic prediction.
They apply a path distance-based weight matrix to implicitly
incorporate the congestion diffusion process into the traffic
prediction model. However, using a stationary weight matrix
limits the ability to express the evolving propagation patterns.
Hence, their method is unable to effectively exploit the
congestion propagation behavior for traffic prediction.

The majority of the work in congestion propagation (or
evolution) relies on statistical analyses using historical data
for regularity mining [13]. These works employ tree [5] or
graph [14] structures to construct congestion propagation re-
lationships, wherein frequent congestion propagation patterns
are mined for various applications. The related works to ours
include [5], which used frequent sub-trees to build Dynamic
Bayesian Network (DBN) for congestion prediction. [15]
also mined sub-tree patterns to improve mining speed and
storage efficiency. The work in [16] discovered frequent
propagation patterns and used Markov chains to predict con-
gestion propagation probabilities. [17] exploits tree structures
to detect historical congestion propagation rather than use
them for prediction. [14] proposed graph-based propagation
patterns and predict patterns in the near future. The works
above typically relied on tree and graph patterns, which
can only be used by limited prediction models, such as
probabilistic graph models (DBN, Markov chains). Our work
employs deep learning-based prediction models that can
incorporate more complex feature components to improve
prediction accuracy.

III. PROPOSED APPROACH
In this section, we introduce our Congestion Propagation

aware Traffic Prediction (CPTP) model, which is capable of
effectively exploiting the heterogeneous feature components
while taking into account dynamically changing congestion
propagation behavior. The model consists of eight modules
as shown in Fig. 1:

1) Feature extraction of temporal dependencies from traffic
speed time-series.

2) Feature extraction of structural factors.
3) Feature extraction of external factors.
4) Learn the importance of those above three latent repre-

sentations using an attention fusion layer.

Fig. 1. Proposed framework.

5) Detect congestion and construct propagation matrices.
6) Calculate propagation probability matrices.
7) Extract propagation trends through diffusion graph con-

volution layers and incorporate them into the final
representation

8) Feed final representation into a fusion layer to predict
traffic speed.

In the following sub-sections, we will describe these
modules in detail.

A. Problem Definition

We denote the traffic network as a graph G = 〈V,E〉,
where V = {ri} is a set of nodes, and each node ri
represents a road segment, E = {(i, j)} is a set of edges,
(i, j) indicate that ri and rj are spatially connected (i.e.
share an intersection). S ∈ RN×T is speed matrix (km/h)
over the entire period of study, T is the total number of time
intervals, and St

i is speed value of ri at time step t. Our
model also relies on structural information, including road
characteristics, POIs, and stochastic factors such as weather
and holidays, to capture traffic situations. Given a graph G
and the aforementioned traffic speed information for the past
P time steps, our problem is to learn a model Θ which can
predict the traffic speed matrix for the entire network in the
next H time steps, Y ∈ RN×H .

B. Temporal Dependencies

Temporal dependencies in traffic speed have been utilized
in many existing works [11]. Our method utilizes three
temporal dependencies between the historical and future
speed observations for each road segment: recent, daily, and
weekly dependencies. As shown in Fig. 1 (left), for each time
step t, we calculate matrix Xt

S ∈ RN×ds from traffic speed.
‘Recent’ feature vector of ri at time step t is calculated as
srti = 〈St−1

i , ..., St−P
i 〉. The daily average value is calculated

as sdti = 1
nd

∑nd
l=1 S

t−Td∗l
i , where nd is the number of

previous days we used to calculate the average speed for
corresponding t, and Td is the total number of time intervals
in one day (Td = 1440/5 = 288 if interval size is 5



mins). Similarly, we calculate the weekly average speed as
swt

i = 1
nw

∑nw
l=1 S

t−Tw∗l
i , where nw is the number of weeks

we considered and Tw is the total number of time intervals
in one week (Td = 1440 ∗ 7/5 = 2016). Finally, temporal
dependency vector for ri at time step t is represented as
Xt

s,i = srti⊕〈sd
t
i〉⊕〈swt

i〉, where ⊕ is concatenate operation.
Xt

s,i is also the i − th row in matrix Xt
s ∈ RN×ds (ds =

P+2). To learn the temporal dependency, for each time step,
we feed Xt

s into a 3-layer LSTM to generate hidden output
Ht

s ∈ RN×dh , The calculations are listed as follows:

it = σ(Wiixt + bii + Whiht−1 + bhi),

ft = σ(Wifxt + bif + Whfht−1 + bhf ),

gt = σ(Wigxt + big + Whght−1 + bhg),

ot = σ(Wioxt + bio + Whoht−1 + bho),

Ct = ft ◦Ct−1 + it ◦ gt, ht = ot ◦ tanh(Ct).

(1)

We omit the superscript for general case, where t denotes
the t-th time step, ht, xt, ht−1 and Ct, are the hidden state
at time t, the input vector at time t, the hidden state at time
t − 1 or initial hidden state at time 0, and the cell state at
time t, respectively. it, ft, gt, ot refer to the input, forget,
cell, and output gates, respectively. σ is a sigmoid function,
◦ is Hadamard product, dh is output dimension of LSTM,
and the hidden dimension of LSTM layers is 64. Finally, the
output hidden states in our LSTM is Ht

s.

C. Structural Information

Our prediction model takes into consideration road char-
acteristics and surrounding POIs [18]. Road characteristics
include road type (e.g., highway, primary way, etc. (one-
hot encoding is applied)), length, number of lanes, number
of bus stops, and number of traffic signals. The POIs are
categorized into 14 types: religion, finance and insurance,
business building, hotel, residence, education and culture,
food, government, scenic spot, medical care, subway station,
sports, entertainment, and living service. For each ri, we
maintain a vector of length 14. We set its midpoint as the
center of a circle with diameter l = 200 meters. If a POI is
located within the circle, the corresponding category will add
1. Finally, the structural feature vector is a concatenation of
the aforementioned vectors, which is represented as Xt

c ∈
RN×Dc . Xt

c is fed into a 2-layer FCN, which generate
Ht

c ∈ RN×dh . The FCN has a hidden dimension of 32 and
sigmoid function as activation function.

D. External Factors

Traffic is affected by many external factors such as weather
conditions and holidays. Adverse weathers affect travel de-
cisions such as trip mode and departure time. Holidays
can also lead to traffic congestion around specific areas
(like temples or churches). Incorporating these factors can
enhance the capability of our model to distinguish such traffic
situations [19]. We construct Xt

e ∈ RN×de to encode external
factors, which include one-hot encoded weather conditions,
concatenate it with a binary variable to indicate whether the
day is a holiday or not. Similarly, external factors exhibit

temporal dependencies, so we also feed them into a 3-layer
lstm as shown in Fig. 1 to obtain latent matrix Ht

e ∈ RN×dh .

E. Attention Fusion Layer

From previous steps, we obtain Ht
s, Ht

c and Ht
e ∈ RN×dh .

To enable the model to learn powerful representation for
each road, we utilize an attention layer to learn the dynamic
importance of each component as follows:

αt
j = FCN(Ht

j), j ∈ {s, c, e} (2)

atj =
expαj∑

j∈{s,c,e} αj
, Ht

f =
∑

j∈{s,c,e}

atj ·Ht
j . (3)

where FCN is a two-layer fully connected network as
discussed in Section III-C, with output dimension N×1. Ht

j

indicates latent representation in {Ht
s, H

t
c, H

t
e}. αt

j ∈ RN×1,
is a value for each ri for the corresponding j-th latent
representation at time t. atj is calculated through a softmax
function to obtain attention scores for all N roads at current
time step t for corresponding j component ({Ht

s, H
t
c, H

t
e}).

Finally, each latent representation is multiplied with the
scores and undergo a weighted summation to get a fusion
representation for all roads Ht

f ∈ RN×dh as shown in Figure
1 (bottom left). So far, we have incorporated several impor-
tant feature components into our fused latent representation
for all roads.

F. Construct Congestion Propagation Matrix

In the following, we introduce the formulation of conges-
tion propagation. Firstly, we determine that a road segment
ri is congested at time t if St

i is lower than a threshold
speed thi, where thi is specific to each ri. Specifically,
in ri’s historical data-set, there exist 75% historical traffic
speed observations which are higher than thi. Based on
speed matrix S ∈ RN×T and corresponding thresholds, a
congestion matrix with same dimension is constructed, C ∈
{0, 1}N×T , where Ct

i = 1 if St
i < thi, otherwise, Ct

i = 0.
Then, we extract congestion propagation as paths in the
following way: at time t, we detect a set of newly emerging
congested roads ri ∈ V ′ where Ct

i = 1 while Ct−1
i = 0. For

each ri ∈ V ′, a path pa = 〈rj , .., ri〉 satisfying the following
three conditions is detected as a congestion propagation path:
(1) each two adjacent nodes in pa are spatially connected
(physically reachable); (2) the initial node of path Ct−1

j = 1
(rj could be a source of propagation); and (3) except for rj ,
all the remaining nodes in pa belong to V ′ (all the remaining
roads propagate congestion within the same time step).

We present congestion propagation at each time interval
as paths rather than road pairs. We consider the situations
within the same time interval; sometimes mild congestion
will propagate to a very local surrounding area; while severe
congestion could propagate farther. Based on obtained paths
{pa}, at t, we construct congestion Propagation Matrix
PM t ∈ {0, 1}N×N . For any pa, every two adjacent road
segments ri, rj ∈ pa, we have PM t(i, j) = 1, where
PM t(i, j) represents the element in i-th row and the j-th
column, otherwise, PM t(i, j) = 0.



G. Calculate Congestion Propagation Probability Matrix

Congestion propagation behavior exhibits different pat-
terns on workdays and weekends. For instance, on workdays,
heavy traffic demands occur in residual areas to business
areas during morning peak hours, while on weekends, more
people may congregate at entertainment areas in the af-
ternoon. Thus, we try to incorporate these knowledge into
our model by calculating congestion Propagation Probability
Matrix (PPM). After constructing congestion propagation
matrices over the entire studied period, we obtain a 3-
way tensor PM ∈ {0, 1}T×N×N , from which we calcu-
late PPM . We extracted PM t for two months (August-
September, 2018) from historical data (18 weekends and 43
workdays). For each t, we obtained two PPMs: PPM tt

wo

and PPM tt
we, where tt ∈ {1, 2, ..., Td}, Td is the number of

time intervals in one day, PPM tt
wo is average matrix of PMs

at corresponding tt for all 43 workdays. Similarly, PPM tt
we

is the average matrix for 16 weekends.

H. Diffusion Graph Convolution Layer

We utilize diffusion graph convolution layer [20] to in-
corporate congestion propagation behaviors into our traffic
prediction model based on the obtained probability matrices
{PPM t

wo, PPM
t
we}. [20] has demonstrated the benefits of

capturing signal diffusion process on graph structure. In
general, they utilize adjacent matrix A ∈ RN×N as follows:

Z =

K∑
k=0

AkXWk (4)

where X ∈ RN×f is the feature matrix for the entire road
network, Wk ∈ Rf×m is the weight matrix of GCN layer to
be learned, and k is the power of the matrix. However, this
layer is not suitable for our problem because: 1) congestion
propagation cannot be presented as a fixed matrix A due
to the dynamic patterns; 2) congestion propagations are
associated with directions, e.g., the probabilities of a road
segment for being a source and target of propagations are
different. To incorporate these two properties into our model,
we designed a new diffusion convolution layer as follows:

P t
a =

K∑
k=0

PPMq
kXtWk,p, P t

b =

K∑
k=0

(PPMq)
′kXtWk,q,

P t
f = P t

a ⊕ P t
b .

(5)

PPMq =

{
ppmt

wo, if t is on workdays.
ppmt

we, if t is on weekends.
(6)

where Xt represents Ht
f , Wk,p and Wk,q are weight matri-

ces, and we changed A to propagation probability matrices,
i.e., PPM t

q is calculated in Section III-G as Eq. 6, whose
value depends on the day of week and time of day of
the current time step. In addition, because the i-th row
represents the probability that ri propagate congestion, while
i-th column indicates that ri is the target of congestion
propagation, we used PPMq to get P t

a ∈ RN×dh2 , and
the transportation of PPMq , i.e. (PPMq)′, to obtain P t

b ∈
RN×dh2 . We concatenate these two terms together and

obtain P t
f ∈ RN×(2dh2) to distinguish directed and dynamic

congestion propagation patterns.

I. Fusion Layer and Loss Function

In the final step, we take Ht
f ∈ RN×dh and P t

f ∈ RN×2dh2

as input matrices, concatenate them into a prediction layer,
i.e., a 3-layer FCN to predict the speed matrix Y ∈ RN×H .
The loss function is as follows:

Loss =

T∑
t=P

(‖Y t − Ŷ t‖2+λ‖Y
t − Ŷ t

Ŷ t
‖2) (7)

where t represents all the time steps from P (we used
previous P steps to predict) to T , and Ŷ t is the ground-
truth speed matrix for time step t, λ is a hyperparameter to
control the weight of the second loss term, which we set as
0.1.

IV. EXPERIMENT AND RESULTS

A. Datasets

Road Network: The traffic network in our experiments is ob-
tained from OpenStreetMap1. A rectangle area in Downtown
area of Singapore (Southwest: 1.2718, 103.8002; Northeast:
1.3323, 103.8653) is selected, and 500 road segments in this
area are tested.
Traffic Speed Data: The traffic speed matrix S is calculated
based on historical bus trajectories derived from bus arrival
data2. In this paper, we apply time interval for: 5 minutes,
10 minutes and 15 minutes, to test the model’s performance
for diverse time granularity. Bus traffic data are from Aug.
01 to Nov. 30, 2018. We used 100 days for training set and
remaining 22 days as testing set. The horizon of prediction
H = 1.
Weather data: Hourly-grained weather data are collected
during the same time period of the bus speed data3.

B. Baselines and Evaluation Metrics

The following baselines are chosen for comparison. 1)
HisAvg [21] uses historical traffic speed to calculate av-
erage speed time series as prediction results. 2) LSTM [22],
a RNN with long-term and short-term memory which has
been extensively used in time series prediction problems.
3) GCNLSTM [8] combines graph convolution with LSTM
to capture both spatial and temporal information for predic-
tion. 4) DKFN [9], a novel deep Kalman Filtering Network
which captures self and neighbor dependencies as well as
bias and noises among traffic data. 5) BTSP [4] identi-
fies important intrinsic and extrinsic features for bus travel
speed and predicts speed using an attribute-driven attention
network. 6) GraphWave [2] proposed a graph WaveNet
with self-adjacency matrix to capture spatial and temporal
dependencies for traffic prediction. 7) DCRNN-Path [23]
proposed a path-based deep convolution RNN to predict
traffic speed. 8) CPTP-woCP is an ablation study baseline

1https://www.openstreetmap.org/export
2https://www.mytransport.sg/content/mytransport/home/dataMall

.html
3https://www.timeanddate.com/weather/singapore/singapore



by removing the congestion propagation aware component.
We use the following performance metrics: Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and
Root Mean Square Error (RMSE).

C. Experimental Setup

Our experiments are implemented in PyTorch framework
on Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz with 32G
RAM. All the hyperparameters are tuned by grid search. We
set dimension dh as 64, and set diffusion step of GCN as
K = 3, the dimension of P t

b and P t
a (i.e.dh2) are all 32.

We train our model using Adam optimizer with a learning
rate of 0.0001. The dropout of diffusion GCN is 0.5. We
normalized features into range [0, 1] and exclude all missing
values. For baselines, all the parameters are tuned to fit the
dataset.

D. Results and Analysis

This section shows the overall performance of all methods
for various time intervals (5min/10min/15min). As shown
in Table I, CPTP outperforms all the baselines on all three
metrics, regardless of the time interval size. CPTP outper-
forms the traditional historical average method by a large
margin as HisAvg only relies on historical speed. LSTM
and GCLSTM use RNN to incorporate short-and long-term
dependencies inherently within speed time series, GCLSTM
improves the prediction by using GCN to capture spatial
correlations. They perform better than HisAvg, but still
inferior to CPTP. This is because CPTP explicitly incor-
porates diverse temporal dependencies in the features and
takes into consideration surrounding information. DKFN,
GraphWave, BTSP and DCRNN-Path have comparable
performance and none of them can consistently outperform
others. It can be observed that they still under-perform
compared to CPTP. GraphWave utilizes graph and dilated
casual convolution techniques to uncover unseen spatial and
temporal dependencies on graph structure. It achieves good
performance in highway networks that exhibit stable traffic
patterns; however, it failed in our dataset because the down-
town area has more complex traffic patterns that frequently
fluctuate due to noise. DKFN performs slightly better than
GraphWave as it uses the dependency observations as noise
measurement rather than treating them as fully reliable.
However, it does not incorporate other features such as struc-
tural and stochastic factors. BTSP considers many features
but employs structure2vec and clustering techniques
to incorporate spatial correlations, which are pre-calculated
rather than learned. As such, it shows lower prediction per-
formance as it is unable to capture evolving spatial correla-
tions. DCRNN-Path uses path-distance weighted adjacency
matrix to incorporate propagation patterns. Path distance
is stationary, but propagation changes over time. It also
neglects several impact factors that are considered in our
model. CPTP-woCP is an ablation study that demonstrates
the effectiveness of congestion propagation aware diffusion
GCN. In the absence of this component, the performance

declines notably. This confirms that congestion propagation
behavior plays a vital role in traffic prediction.

Fig. 2. Train and test loss.

Figure 2 shows the train and test loss of our method and
selected baselines (which have comparable training/testing
time with ours). It can be observed that our method does not
experience over-fitting, and the model loss stabilizes after
nearly 20 epochs. Figure 3 are case studies for two specific
road segments, where rs I locate close to a scenic area.
Therefore it shows a declining speed trend around 10:00 am
on Sunday in (c) due to visitors, while on Monday it exhibits
free to flow around 18:00 in (a), as the scenic area is rarely
visited during this time. rs II is a segment of the busy
Orchard Road. It can be observed that the speed fluctuates
strongly compared to rs I, and its periodic patterns are
not as evident in (b) and (d). This is because there are
always many visitors, i.e., more local residents on Sunday
and more overseas tourists on Monday. In both situations,
our method achieves good prediction performance, as shown
in the figure. The training efficiency of our model is also
evaluated for a dataset with 13160 samples. The training
time is 36.78s for each epoch, and the testing time is 12.56s
for each epoch.

V. CONCLUSIONS

We propose a traffic speed prediction model that incorpo-
rates congestion propagation behavior while jointly consider-
ing correlations among other commonly used impact factors.
A deep learning-based module is developed to infer traffic
states based on heterogeneous feature components extracted
from seasonal, structural, and stochastic factors. A novel
diffusion graph convolution network method is employed to
incorporate congestion propagation behavior while simulta-
neously learning spatial correlations. The experiment results
on Singapore roadway and traffic datasets demonstrated
the superiority of our model and the significance of using
congestion propagation behavior for traffic prediction.
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