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Abstract— Modern visual Simultaneous Localization and
Mapping (SLAM) systems rely on loop closure detection meth-
ods for correcting drifts in maps and poses. Existing loop
closure detection methods mainly employ conventional feature
descriptors to create vocabulary for describing places using
bag-of-words (BOW). Such methods do not perform well in
long-term SLAM applications as the scene content may change
over time due to the presence of dynamic objects, even though
the locations are revisited with the same viewpoint. This work
enhances the loop closure detection capability of long-term
visual SLAM by reducing the number of false matches through
the use of location semantics. We extend a semantic visual
SLAM framework to build compact global semantic-geometric
location descriptors and local semantic vocabulary trees, by
leveraging on the already available features and semantics. The
local semantic vocabulary trees support incremental vocabulary
learning, which is well-suited for long-term SLAM scenarios
where the scenes encountered are not known beforehand. A
novel hierarchical place recognition method that leverages the
global and local location semantics is proposed to enable fast
and accurate loop closure detection. The proposed method
outperforms recent state-of-the-art methods (i.e., FABMAP2,
SeqSLAM, iBOW-LCD, and HTMap) on all datasets considered
(i.e., KITTI, Synthia, and CBD), with highest loop closure
detection accuracy and lowest query time.

I. INTRODUCTION

Loop closure detection in modern visual SLAM systems
is used to correct drifts by finding the correspondences
of the current place with previously visited places. It is
also used during relocalization to recover the camera pose
in the event of localization failure. Most of the existing
loop closure detection methods use traditional visual bag-
of-words (BOW) for place recognition. The BOW requires
a training stage where a set of visual features (from the
training images) are clustered to generate a vocabulary, i.e.,
set of quantized visual features called visual words [4].
During the loop closure detection, images are represented
as histograms of occurrences of the visual words. However,
the traditional feature-based BOW methods are ineffective
in long-term SLAM applications where the scenes change
over time. Furthermore, pre-trained BOW methods use static
vocabularies which are not well-suited for long-term place
recognition (as scenes may differ from the training images).

This paper improves the speed and accuracy of loop
closure detection under dynamic scene conditions and vary-
ing viewpoints. Specifically, we leverage on the semantic
information that are readily available in existing semantic
visual SLAM systems [1, 14] to build location semantics for
scene identification. We develop a viewpoint-invariant global
semantic-geometric location descriptor which encodes the

distances between various semantic blobs in a scene using
a normalized histogram. This histogram provides a coarse
description of the places, which can be quickly matched to
retrieve a set of global locations (group of places). Each
of the global locations maintains local semantic class-wise
BOW vocabulary to enable precise image matching of the
current place and the visited places. The semantic class-
wise BOW vocabulary is learnt online through class-based
grouping of tree nodes, and the local trees under a class node
are learned using incremental BOW approach [5] without a
pre-training stage.

A hierarchical loop closure detection method that utilizes
the global and local location semantics is proposed. The
hierarchical approach leads to lower query time by grouping
similar (semantically and structurally) places, which are
globally represented as semantic-geometric descriptors. Once
a set of global locations is matched with the the current
location, the corresponding class-wise BOW vocabulary,
which incorporates higher descriptiveness of the scenes, is
used to refine the place recognition. In addition, selective
weighting of words based on the semantic class of the local-
tree is used to discard dynamic objects in the matching
process. This reduces the number of mismatches, leading
to higher loop closure detection accuracy.

Our work highlights the importance of distinguishing
between grossly dissimilar looking places based on global
semantic and geometric cues, similar to the way humans
perceive locations. Detail local descriptors are then used
to refine place recognition within the global locations. The
class-wise BOW vocabulary increases the robustness of scene
identification in the presence of moving objects by provid-
ing semantic class-based weighting of words in vocabulary
trees. The proposed method can be integrated into existing
semantic visual SLAM systems for more accurate loop
closure detection without incurring much computation cost.
We provide extensive experimental results on well-known
datasets to show that the proposed technique outperforms
existing state-of-the-art loop closure detection methods in
challenging environments.

Autonomous agents (robots, vehicles) perform navigation
by localizing themselves with respect to a metric map of
world and is commonly addressed as a joint problem known
as SLAM. Due to sensor noise and other factors (limited
sensor range, abrupt camera motion, scene dynamics etc.),
the generated map and localization usually suffers from
high inaccuracy or even localization failures [14]. Therefore,
SLAM employs loop closure detection to find correspon-



dences of the current scene with previously visited scenes
and use them to rectify the pose or relocate the agent.
Moreover, place recognition (crucial function of loop closure
detection) plays an important role in distributed SLAM,
where maps built by different agents need to be fused to
create a globally consistent map.

We will only discuss loop closure detection in the context
of visual SLAM (i.e., using camera sensor) due to its inher-
ent advantages [3]. The primary challenges faced by loop
closure detection methods are viewpoint invariance, query
time complexity, and scalability [11]. Various methods have
been proposed to deal with these challenges and majority of
them falls into the category of appearance-based methods.
The place appearance is associated with place descriptors.
In topological representation, the agent’s locations (using
associated images) are partitioned into distinct locations
based on their descriptors. If the place description contains
only topological information, then place recognition just
provides most likely locations, whereas if place description
contains metric information, then precise location can be
identified.

Among the appearance methods, the BOW model is the
most popular [11, 4] due to its efficiency in representing
places in the form of compact visual words and tree-based
indexing. BOW is an image indexing model inspired by
text-based document analysis. In this model, a vocabulary
(dictionary) is maintained which contains distinct visual
words. The local feature descriptors from the query image
are quantized into set of representative visual words and the
histogram of visual words is used as the image descriptor [4].
Each word also maintains a term frequency inverse document
frequency (TF-IDF) score [11], which is the product of term
frequency (TF) and inverse document frequency (IDF). The
TF measures the frequency of appearance of a word across
images and IDF measures how common is the word across all
images. DBOW [4] and FAB-MAP are the best performing
methods and are most commonly used in visual SLAM.
DBOW [4] uses FAST features and binary BRIEF descriptors
to increase speed. DBOW2 [4], which uses robust scale
and rotation invariant ORB descriptor, has demonstrated
improved accuracy and is also one of the fastest. FAB-MAP
[10] and FAB-MAP 2.0 [2] also use an inverted index with a
BOW model to perform visual place recognition. Chow-Liu
tree is used for approximation of co-occurrence probabilities
of visual words.

In the BOW model based methods [4], the visual vocabu-
lary is traditionally trained offline due to the time consuming
clustering of descriptors. This is one of the main limitation of
these methods as the vocabulary is trained only for specific
scenarios and require a separate training stage. As such,
they do not perform well on unseen scenarios. To resolve
this problem, [5] developed incremental BOW based loop
closure detection (iBOW-LCD). In this method, vocabulary
is learned incrementally on the incoming scenes. iBOW-
LCD adapts to the current scene by updating the vocabulary
tree via adding and deleting visual words. To keep the
computational complexity low, it uses islanding to group

images which are temporally close.
Methods such as [6] have demonstrated that place recog-

nition speed can be improved by hierarchically grouping
the places. HTMap [6] extracts PHOG as global feature
descriptors and LDB as local feature descriptor from images,
and then uses the global features for grouping similar places.
It uses local features for final image matching. HTMap uses
Bayes filter to combine the descriptor matching scores of
the two levels. However, the transition model calculation
becomes computationally expensive with increasing number
of images. Another approach utilizes sequence of images
to perform place recognition [12]. The main assumption of
this method is that the camera passes through previously
visited paths, which can be leveraged upon to improve place
recognition in visually challenging environments.

Learning deep descriptors, such as LocNet [9], Point-
NetVLAD [15] for place recognition is another field of
work. However, these methods require long training and
inference time, which is not feasible for real-time visual
SLAM running on resource-constrained embedded platforms.
Furthermore, although there are several existing methods that
exploit semantics for improving SLAM front-end, there is
little work that exploits semantics for the SLAM back-end
to perform loop closure detection.

Unlike existing works, our proposed method incorporates
a hybrid topological-metric approach for describing places by
grouping places with similar semantic-geometric structures,
and using feature-based BOW to refine the representation of
a place. In the latter, we use the training methodology for a
basic vocabulary tree similar to iBOW-LCD. However unlike
iBOW-LCD, our loop closure detection method creates sep-
arate semantic class-based nodes at the top level of the trees
to distinguish between BOW descriptors of different classes
and facilitates intra-class matching of descriptors.

The main contributions of this paper are as follows:

• A hierarchical loop closure detection method that finds
semantically similar places, and refines place recogni-
tion using locally learned visual words. This leads to
higher accuracy and lower query time, which is well-
suited for long-term SLAM operations.

• A viewpoint-invariant global semantic-geometric de-
scriptor that groups locations with similar semantic-
geometric structures. A new location is created dy-
namically when the appearance of the environment,
determined from the semantic descriptor, differs notably
from past locations.

• Each location maintains its own vocabulary of local
scenes that is learnt online. We propose local seman-
tic vocabulary trees that allow simple class-wise dis-
crimination of words and dynamic removal of moving
objects.

• The proposed method outperforms other recent state-
of-the-art methods (i.e., FABMAP2, SeqSLAM, iBOW-
LCD, and HTMap) on all datasets considered (i.e.,
KITTI, Synthia, and CBD), with highest loop closure
detection accuracy and lowest query time.



II. PROPOSED METHOD

For fast loop closure detection, the visited places need
to be described in a compact form. At the same time, it
must be descriptive enough to distinguish between dissimilar
places. We propose a hierarchical description of places
using location semantics to reduce the search space for
place recognition by enabling large number of unrelated
locations to be filtered without sacrificing the accuracy. The
local semantic class-wise BOW vocabulary of the potential
locations are then used to achieve precise place recognition.
This overcomes the limitations of existing approaches that
rely solely on feature-based BOW for queries, as the depth
of the vocabulary tree increases with the number of places
visited.

We store the historical information of the visited places
in the form of global locations, L = {l1, l2, ...}. Each
global location, lj ∈ L, is a group of semantically similar
images (or places) and is described by a single represen-
tative mean descriptor, drepr meanj . The drepr meanj is the
average descriptor of the group members (i.e. images in the
group). We propose semantic-geometric descriptors, dGSGm ,
to represent an image Im globally, and thereby utilizing the
similarity in 3D semantic and geometrical structure of the
scene. A location lj also has a corresponding vocabulary tree
(Class Treej) to refine place recognition within a location.
The vocabulary tree (Class Treej) is built using local fea-
ture descriptors (we use ORB descriptors) through semantic-
class-wise branching. The semantic-class-wise branching is
used for improving the distinctness within BOW description
and to separate weighting of words belonging to dynamic
classes.

The proposed loop closure detection process is shown
in Fig. 1. ORB feature descriptors (DLocal

i ) and semantic
map (Si) are extracted from each incoming image (Ii). The
semantic-geometric descriptor (dGSGi ) is extracted from the
semantic map (Si). The dGSGi is then used to search for the
matching location among the set of locations L = {l1, l2, ...}.
If matching location is not found, a new location ln is
created by initializing its representative mean descriptor,
drepr meann and initial mean descriptor, drepr meann as dGSGi .
The corresponding Class Treen is also initialized. Other-
wise, if matching location best loc is found, image matching
is performed within the best loc using Class Treebest loc
and the location is updated using the new member image Ii.

Semantic-geometric descriptor extraction is discussed in
Section II-A, while the search, creation and update of loca-
tions are discussed in Section II-B. Section II-C and Section
II-D describes the Class-tree and image matching process
respectively.

A. Global Semantic-Geometric Descriptor

We define a location as a group of similar semantic places
(images). As semantic information is already available in
most semantic visual SLAM systems, we utilize it to group
places. However, the semantic entities alone cannot provide
enough distinctiveness for place recognition. We hypothesize
that the relationship among different semantic entities in

the scene can provide sufficient distinct information about
the place. While similar relationship has been modelled
in the past using random walk descriptors (feature-based)
to encode the neighbourhood information, they incur high
computational complexity due to graph creation, random
walk descriptor generation from graph, graph-matching. and
continuous graph merging for each input image. We propose
to formulate the neighbourhood information for all pairs
of semantic class entities. The relationship between the
semantic entities can be further strengthened with structural
information of the scene. We propose to model the structural
information using distances between the semantic entities.
This leads to lower computational complexity compared
to using distances between feature (key-points) pairs. The
semantic entity pairs and the distances between them are
used to generate histogram descriptors. Our analysis of
these descriptors reveals that images with similar semantic-
geometric structures have similar (low distance) normalized
histogram (distribution). The complete process of generating
these descriptors is explained next.

First, from the pixel-wise semantic segmentation of the
current image, we extract connected regions of each class
(also known as blobs). The blobs are smoothed using mor-
phological operations (i.e. dilation and erosion) to remove
unwanted noise (holes, disconnected edges, and invalid
labels). This ensures clean boundaries between semantic
segments. Each blob is then represented by its centroid in
3D camera coordinate. To re-project the blob centroid from
2D image coordinate into 3D camera coordinate, depth in-
formation is utilized (also available in most SLAM systems).
Each blob is then represented as its semantic label si and 3D
centroids (Xi), as shown in Fig. 2 (blob extraction step). Note
that there can be multiple instances of the same semantic
class, for example class ’A’ has two instances in Fig. 2. The
semantic relationships are then encoded as pairs of semantic
classes present in the current scene. 3D distances between
blobs accounts for the semantic-geometry present in the cur-
rent scene. These distances are then uniformly quantized into
’K’ bins (e.g. 0-10m, 10-20m, and ≥ 20m in Fig. 2 for bin
range, R=10 and K=3) for each type of semantic pair (AA,
AB, and so on, in Fig. 2). Then for all these semantic pair
bins, histogram is generated by counting the number of edges
present in a particular bin and semantic pair. The bins are
then concatenated and normalized with respect to the number
of edges present, to obtain the descriptor. As such, the
descriptor encodes of distribution of semantic-geometries,
i.e. how the pairs of semantic entities are distributed in a
scene. If two different scenes contain same semantic classes
but significantly different edge distance between entities,
then their descriptors (i.e. histogram/distributions) are also
different. However, if two scenes have similar semantic pairs
and their corresponding distances are also in the same bins,
then they can be grouped together. The number of bins
determines the distinctness of the descriptor. Larger ’K’ value
will lead to sparser and distinct descriptors, and therefore,
more number of locations are generated. On the other hand,
smaller ’K’ will lead fewer number of locations, because the



Fig. 1: Proposed loop closure detection, which consists of prepossessing and querying modules. First, location is searched
using semantic-geometric descriptors, dGSGi , and then image is searched within the best matched location using ORB
descriptor DLocal

i .

Fig. 2: A dummy example of extracting global semantic-geometric descriptor from semantic image.

range of distances within a bin is large. In our current work,
’K’ is chosen empirically as discussed in the experiments
section.

B. Global Locations: Creation, Search and Update

We describe a location as a group of images which
have similar semantic-geometric descriptors. This similarity
can be measured in vector space of the descriptor, but
for simplicity we use Euclidean distance measure for our
experiments. Since each location must be generated on-
the-fly (i.e., for each incoming image), using traditional
clustering methods that processes on a set of samples will
incur large delay and storage requirements. Furthermore, by
using such clustering, the clusters can undergo significant
changes in cluster centres, and hence the data-points (images)
may need to be dynamically moved to other clusters. In
our case, we require each image to be associated with a
fix cluster to maintain a consistent hierarchical database
of vocabulary trees. Otherwise, if images shift from their

clusters, the associated local vocabularies need to be updated
frequently which will increase the system complexity. Hence,
we propose to use a simple but effective mean-shift based
grouping as described below. The method is shown in Fig.
3 and Algorithm 1.

1) Creation and Update: A location lj is represented
by two mean descriptors i.e., initial mean descriptor vec-
tor dinit meanj and representative mean descriptor vector
drepr meanj . A new location lk = {drepr meank , dinit meank } is
created when a new image Ii with descriptor dGSGi arrives
that does not match with any of the existing locations (or
there are no existing locations). The location descriptors
are initialized as drepr mean = dinit mean = dGSGi . The
initial mean descriptor is updated only until first ’M=5’
member images are added and is then fixed thereafter. The
representative mean descriptor of a best matching location
(lbest loc) is updated throughout its lifetime as new image (Ii)
is added to the location; which is the mean of all member



Fig. 3: Location matching and creation.

Algorithm 1 Search location: find matching location for dGSGi

1: initialize ∆min =∞
2: for all lj ∈ L do
3: ∆i,j = ||dGSG

i − drepr mean
j ||

4: if ∆i,j < τmax dist then
5: dnew repr mean

j = (drepr mean
j ∗Nj + dGSG

i )/(Nj + 1)

6: ∆(dnew repr mean
j , dinit mean

j ) = ||dnew repr mean
i − drepr mean

j ||
7: if ∆(dnew repr mean

j , dinit mean
j ) < τmax shift and ∆(dnew repr mean

j , dinit mean
j ) < ∆min then

8: best loc = j
9: ∆min = ∆(dnew repr mean

j , dinit mean
j )

10: end if
11: end if
12: end for

Algorithm 2 Create or update location: if no location
matches then create new location, otherwise update matched
location.

1: if best loc 6= ∅ then
2: drepr mean

best loc = dnew repr mean
best loc

3: Nbest loc = Nbest loc + 1
4: if Nbest loc < 5 then
5: dinit mean

best loc = drepr mean
best loc

6: end if
7: else
8: drepr mean = dinit mean = dGSG

i

9: lk = {drepr mean, dinit mean}
10: L = L ∪ lk
11: best loc = k
12: Nbest loc = Nbest loc + 1
13: end if

descriptors, i.e.,

drepr meanbest loc = (drepr meanbest loc ∗Nbest loc+dGSGi )/(Nbest loc+1)
(1)

where Nbest loc is the number of members in the lbest loc
before the update and dGSGi is the descriptor of Ii. The
idea of having two (i.e., initial and representative) mean
descriptors is to allow bounded shift in the cluster (location)
centre (i.e., representative mean) as shown in Fig. 3. This
ensures that the location or cluster centre cannot deviate far
from its initial formation. This avoids the formation of large
clusters with high intra-variance. The location search process
to find the best location (best loc) is described as follows and
listed in Algorithm 1.

2) Search: For each new image Ii, the distance (∆i,j) of
its descriptor dGSGi is calculated with each existing location
lj ∈ L as:

∆i,j = ||dGSGi − drepr meanj || (2)

If the distance ∆i,j is less than predefined threshold
τmax dist, then the shift in the representative mean descriptor
with respect to the initial mean descriptor is calculated.

dnew repr mean
j = (drepr meanj ∗Nj + dGSGi )/(Nj + 1) (3)

∆(dnew repr mean
j , dinit meanj ) =

||dnew repr mean
i − drepr meanj || (4)

The lowest ∆(dnew repr mean
j , dinit meanj ) within allowable

shift τmax shift is chosen as the best loc. If there is no
matching location, a new location is created. Comparisons
with only one descriptor per location is required to match
an incoming new image to a global location, which requires
very low computation. Before adding a new image to this
location, the shift in the representative mean descriptor with
respect to the initial mean descriptor is compared (Fig. 3). If
this mean-shift is greater than a threshold, the corresponding
location is considered unmatched. By performing mean-shift
based grouping of images, distinct clusters are maintained
without shifting the cluster centre too much. This also results
in computational savings compared to traditional clustering.

C. Local Class-tree
Each location maintains its own local BOW trees which

are updated as more images are added to the location. We



use the OBINDEX library [7] to create and update the
incremental BOW vocabulary [5]. Moreover, as semantics
provide class labels of the features in the image, we utilize
this information as extra layer of nodes at the top-level of
the hierarchical trees to introduce class-wise weighting of the
words, and to query only the features from the class that is
present in the scene, while disregarding the occluded classes.
The query image consists of N feature descriptors (ORB) and
each descriptor is searched only in its respective class tree,
as shown in Fig. 4. Finally, image match is retrieved using
TF-IDF score to obtain the maximum weighted match. In
this work, we empirically assign significantly lower weights
to sky class and dynamic classes (person, car, etc.), hence
minimizing the impact of dynamic objects in place recogni-
tion.

Fig. 4: Class-wise location trees.

D. Image Matching

Algorithm 3 Image Matching: search DLocal
i in correspond-

ing class-trees of the best location and update trees
1: for all j ∈ DLocal

i do
2: search DLocal

i,j in Class Treebest loc to get representative Wordj
3: Words = Words ∪ Wordj
4: end for
5: Image Matches= TF IDF V oting(Words)
6: Ibest match = Islanding(Image Matches)
7: geometric verification of Ibest match

8: update BOW CLASS TREEbest loc and TF IDF

Once the best matching location has been retrieved as
discussed in Section II-B and the current image has been
added to the best location, the best location match is then
used to query the local descriptors DLocal

i , as given in
Algorithm 3. If there are no location matches, a new location
is created. For the matched location, the corresponding local
descriptors from DLocal

i list are searched in the correspond-
ing BOW class-tree (Section II-C). The dynamic classes
are not given zero weight in this work, therefore we do
not search descriptors belonging to these classes, but other
weighting strategy also can be employed. The probable
image matches are weighted and retrieved using TF-IDF
inverse index of that location. The matches are then grouped
into islands similar to [5]. We use islanding method instead
of discrete Bayes filter to reduce the computation time. The
best image match found using the islands approach is then
geometrically verified using the inliers count. And finally the

TABLE I: Parameter settings used in proposed approach.

Parameters Value
Number of ORB descriptors, N 1000
bin size, K 8
bin range, R 8
max distance to location, τmax dist 4
maximum mean shift, τmax shift 2

BOW CLASS TREEbest loc is updated using incremental
learning [7] with class-specific tree branching.

III. EXPERIMENTS

In this section we evaluate the proposed loop detection
approach against state-of-the-art methods in terms of perfor-
mance and runtime.

A. Experimental Setup

1) Datasets: In this work, we try to overcome the chal-
lenges faced by existing loop closure detection methods
(place recognition in general). These challenges include
scalability, speed, dynamic objects, and viewpoint variations,
which are prevalent in autonomous driving systems. There-
fore, we select one of the most popular public datasets used
for localization i.e., KITTI [8]. KITTI provides 11 video
sequences, out of which 5 sequences (00, 02, 05, 06 and 07)
contains loop. KITTI contains moderate number of dynamic
objects including car and pedestrians. For proof of concept,
we also include another public dataset, i.e., synthetic Synthia
[13], where sequence 04 contains loop. To test the robustness
of the proposed method against large number of dynamic
objects, we also include CBD dataset [16]. The proposed
method requires depth values to estimate the 3D coordinates,
and hence we use datasets that provide depth information.

2) State-of-the-art Baselines: We compare the proposed
method with state-of-the-art loop closure detection methods,
FABMAP 2.0, SeqSLAM, iBOW-LCD and HTMap. These
methods encapsulate variety of methods that are currently
used in visual SLAM system. FABMAP 2.0 is the latest
version of FABMAP [2], that is based on pre-trained BOW
vocabulary. SeqSLAM [12] uses sequence of images to
improve the loop detection accuracy. iBOW-LCD learns the
vocabulary incrementally and therefore doesn’t require any
training stage. Similarly, HTMap uses incremental learning.
However, HTMap employs a hierarchical approach to reduce
the search space for place recognition and maintain high
accuracy when creating a map. There have been several other
works focusing on various aspects of loop detection and
place recognition, but in this work we primarily focus on
visual SLAM systems that require real-time operation. Apart
from the speed requirements, we also tackle the challenges
posed by dynamic objects in the scene on loop closure
detection.

3) Implementation Details: All the experiments are per-
formed on Intel® Xeon(R) CPU E5-1630 v4 @ 3.70GHz ×
8. The baselines are run using their default settings. Similar
to iBOW-LCD, the proposed method runs on single core
and OBIndex [7] uses multiple cores. The main parameter
settings used in our method are given in Table I.



Fig. 5: Precision-recall curves for FABMAP2, SeqSLAM, iBOW-LCD, HTMap, and proposed method for various datasets.
Only methods with valid loop detection results are shown.

TABLE II: Recall rates at 100% precision are given, miss-
ing value ’x’ indicates the method did not achieve 100%
precision. The proposed method is indicated as ’Ours’.

Sequence FAB-MAP2 seqSLAM iBOW-LCD HTMap Ours
KITTI 00 49.21 67.04 76.36 90.62 95.64
KITTI 02 90.95 x 71.96 x 91.20
KITTI 05 32.15 35.93 25.91 75.88 77.58
KITTI 06 55.34 64.68 92.19 97.03 99.63
KITTI 07 23.64 10.67 58.67 42.67 72.00

SYNTHIA 04 x 65.38 62.82 42.31 91.03
CBD stereo x x 9.83 x 64.47

B. Performance Evaluation

The loop detection method accuracy is defined as the max-
imum recall at 100% precision. The accuracy comparison of
the proposed method with FAB-MAP2, SeqSLAM, iBOW-
LCD, and HTMap is given in Table II. All the experimental
results are obtained by running the open source code of
these methods in their default configuration provided by
the authors. The ’x’ in the table implies that the particular
method’s precision on the specific sequence cannot achieve
100% precision and therefore, has inferior performance.

The best accuracy among all methods for each sequence
is also highlighted. It can be observed that the proposed
method obtains highest accuracy among all methods for all
sequences. HTMap is the second best performing method
on KITTI 00, KITTI 05, and KITTI 06 sequences after the
proposed method. On the highly dynamic sequence CBD, the
proposed method outperforms all other methods by achieving
64.47 recall at 100% precision. In this sequence, several parts
of the image is occluded by dynamic objects during the loop
closure detection, which makes it very challenging to detect
the matching places. The precision-recall (PR) curves are
shown in Fig. 5.

TABLE III: Runtime comparison of loop closure detection of
proposed method with FABMAP2, SeqSLAM, HTMap and
iBOW-LCD.

Method Avg. total time millisec Avg. query time millisec
FAB-MAP2 226.04 -
SeqSLAM 160.5 -
HTMap 106.8 (feat. extr. +query) 87

iBOW-LCD 203 (feat.extr. + query) 180

Proposed 71.7 (feat.extr. + query) +
69.7 (semantic extraction) 45



C. Runtime Analysis

In this subsection, we discuss the runtime of the pro-
posed method to query images to find matching location.
The runtime of the proposed method is compared with the
baselines in Table III. It can be observed that SeqSLAM is
faster than FABMAP2, but HTMap is still faster requiring
106.8ms for feature extraction and query process. On the
other hand, the proposed method takes only 71.7 ms for
feature extraction and querying. If we take the runtime
of semantic segmentation into account (i.e., 69.7ms with
EdgeNet), then the total time increases to 141.4ms. However,
we argue that in modern semantic visual SLAM systems, the
feature extraction and semantic image are already available,
therefore only the query time of loop closure detection is
relevant in our evaluation. Hence, we also compare the query
time of HTMap and iBOW-LCD with the proposed method.
Compared to HTMap (87ms) and iBOW-LCD (180ms), the
proposed method only takes 45ms for the querying process.
This improvement in querying speed is due to the proposed
hierarchical approach that reduces the search space at the
location level and the computation reduction at the class-
tree. The proposed method therefore increases the scalability
of the system through the use of coarse locations that
are grouped based on their semantic-geometric structures
to reduce the query search space. The Class-tree further
reduces the search time through class-based branching with
significantly lesser descriptor comparisons.

IV. CONCLUSION

In this work, we propose to use global semantic-geometric
descriptors for high-level place categorization which is in-
spired by how humans perceive places. As the metric in-
formation is necessary for precise localization, we also use
local feature description of the places. The proposed hierar-
chical loop closure detection uses the high level semantic-
geometry information to narrow down the search space and
remove false matches, hence reducing the query time. The
semantic locations are created and maintained dynamically.
The semantic Class-wise tree BOW is used to obtain higher
descriptiveness within each class of features. This leads
to improvement in loop closure detection accuracy. The
dynamic outliers due to the presence of moving objects are
handled by the proposed weighting strategy for class-trees.
The effectiveness of this method is demonstrated in datasets
with highly dynamic sequences. Moreover, the proposed
method does not require a pre-training stage for vocabulary
compared to FABMAP and SeqSLAM. This enables long-
term operations (words get updated and removed) where the
agents will likely encounter many unseen places. Finally, the
proposed loop closure detection method does not pose any
notable overhead in modern semantic visual SLAM systems
as it uses the features and semantic information that are
readily available.
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