
CAP: Context-Aware Pruning for Semantic Segmentation

Wei He Meiqing Wu Mingfu Liang Siew-Kei Lam

School of Computer Science and Engineering, Nanyang Technological University,
50 Nanyang Ave, Singapore

{wei005, n1806181l}@e.ntu.edu.sg {meiqingwu, assklam}@ntu.edu.sg

Abstract

Network pruning for deep convolutional neural networks
(CNNs) has recently achieved notable research progress on
image-level classification. However, most existing pruning
methods are not catered to or evaluated on semantic seg-
mentation networks. In this paper, we advocate the im-
portance of contextual information during channel pruning
for semantic segmentation networks by presenting a novel
Context-aware Pruning framework. Concretely, we formu-
late the embedded contextual information by leveraging the
layer-wise channels interdependency via the Context-aware
Guiding Module (CAGM) and introduce the Context-aware
Guided Sparsification (CAGS) to adaptively identify the in-
formative channels on the cumbersome model by induc-
ing channel-wise sparsity on the scaling factors in batch
normalization (BN) layers. The resulting pruned models
require significantly lesser operations for inference while
maintaining comparable performance to (at times outper-
forming) the original models. We evaluated our framework
on widely-used benchmarks and showed its effectiveness on
both large and lightweight models. On Cityscapes dataset,
our framework reduces the number of parameters by 32%,
47%, 54%, and 63%, on PSPNet101, PSPNet50, ICNet, and
SegNet, respectively, while preserving the performance.

1. Introduction
Semantic segmentation, which predicts a semantic label

for all pixels in the given image, plays a vital role in appli-
cations such as autonomous driving, robot navigation, etc.
It has achieved significant progress in recent years due to
the advancement of CNNs [1, 6, 12, 22, 37]. Nonetheless,
like image-level classification, the state-of-the-art models
[5, 37] for semantic segmentation also have a large num-
ber of parameters and require high computational cost for
such dense prediction. This hinders their deployment on

mobile or embedded devices with limited resources and a
strict requirement on inference latency. A large body of re-
search has been dedicated to overcome these deployment
challenges by reducing model size and floating-point oper-
ations. One direction is to design efficient lightweight mod-
els [36, 28] directly. Another orthogonal research area is to
accelerate the models by removing the parameter redundan-
cies via network pruning [11, 19, 20, 16]. However, most
existing pruning methods are mainly evaluated for image-
level classification networks, and their generalization on se-
mantic segmentation networks are seldom discussed.

Lately, for improving accuracy, a few works have begun
to exploit the contextual information in semantic segmenta-
tion [8, 35, 34, 38], where they mostly attempt to integrate
the global context hints with either attention [31] or non-
local mechanisms [32]. These works motivated our hypoth-
esis that since contextual information is crucial for perfor-
mance, they can also serve as an essential cue to guide prun-
ing. Particularly, when pruning segmentation networks, em-
phasis must be given to preserving contextual informative
features, whilst channels that exhibit lesser important con-
textual properties can be discarded. Our approach departs
from all existing network pruning methods that are agnostic
to the contextual information in the intermediate features.

In this paper, we propose a novel network compression
framework, called Context-aware Pruning. The framework
is based on the crucial insight of semantic parsing, wherein
the determination of pixel semantics requires abundant ag-
gregation of local abstract features with its surrounding
information. A Context-aware Guiding Module (CAGM)
is proposed to quantify the contextual information among
channels into a guiding vector. Next, to distinguish the criti-
cal channels in the original model, a Context-aware Guided
Sparsification (CAGS) approach is introduced to sparsify
the channel-wise scaling factors in the batch normalization
(BN) layers [18] under the guidance. By enforcing the scal-
ing factors to zero, the corresponding channels can be re-



garded as redundant since their output will be scaled to zero,
and hence, these filters can be potentially removed. Since
the BN layer is generally employed in most networks, our
framework can be easily applied. Moreover, for CNNs with
no normalization layers, simple pseudo scaling factors [16]
can be introduced. Our main contributions are as follows:

• To the best of our knowledge, this is the first work
to explore contextual information for guiding channel
pruning tailored to semantic segmentation. In the pro-
posed framework, CAGM quantifies the contextual in-
formation using the channel’s association. CAGS is
introduced to induce channel-wise sparsity under the
formulated contextual guidance, where the structured
penalty is emphasized or de-emphasized accordingly.
Besides, the proposed optimization is able to reveal the
informative channels adaptively from different inputs.

• Our work is the first to expose large opportunities for
pruning both large and lightweight semantic segmen-
tation models, where a good generalization is demon-
strated via quantitative results. It not only effectively
removes redundancies in large networks like PSPNet,
but can also prune lightweight networks like ICNet.

• On various benchmarks (e.g., CamVid, Cityscapes),
extensive experimental results show the advantages
of our framework, which can effectively generate
compact models for various state-of-the-art segmenta-
tion networks with significantly fewer parameters and
floating-point operations, while maintaining better per-
formance to (at times outperforming) the original mod-
els, comparing to all other baseline methods.

2. Related Works
Semantic Segmentation. Since the advent of FCN [22],

various architectures have been proposed for semantic seg-
mentation. Among the encoder-decoder style, Unet [29]
and SegNet [1] share encoder’s features or information
via shortcut connection and the pooling indices, respec-
tively. Dilated-convolution-based models enlarge the recep-
tive field via dilated/atrous convolution operations to ex-
tract and aggregate larger sub-region context. To gather
multi-scale contextual information from high-level features,
Deeplab series models [4, 5] use the atrous spatial pyra-
mid pooling (ASPP), and PSPNet [37] introduces a pyramid
pooling module (PPM). However, PSPNet101 has 70.43
million parameters (approximately 282MB memory stor-
age) and requires 574.9 Giga FLOPs per image per infer-
ence in the Cityscapes dataset, and its inference speed on a
TitanX GPU is only 0.78fps [36]. This violates the real-time
requirement of many real-world applications.

To cater to the real-time constraints of low-power de-
vices, attempts have been made to directly design lesser

accurate but lightweight segmentation models. ENet [28]
gains notable acceleration at the cost of significant accu-
racy drop, while [36] presented ICNet, balancing the perfor-
mance. However, designing an efficient and compact seg-
mentation structure is time-consuming and requires many
trial-and-error attempts. Moreover, as shown in Section 4,
lightweight architectures such as ICNet still possess mas-
sive redundancies that can be discarded by our method.

Network Pruning. There is a general consensus that
over-parameterization of most CNNs are necessary for
training but not for inference. Network pruning aims to
remove redundancies in the over-parameterized models for
faster inference while maintaining most model capacity.
Among them, the non-structured pruning methods [11, 25]
require specialized library or hardware support, while struc-
tured pruning [33, 27, 23, 15] approaches focus on prun-
ing the entire structure for easier implementation (e.g., ker-
nel, filter, and even layer). SSL [33] sparsifies structures
with Group Lasso, while other sparsification-based meth-
ods identify the redundancies on multi-level structures by
imposing sparsity [16, 20, 10]. SFP [13] keeps updat-
ing the pruned filters by setting their weights to zero in-
stead of removing. Different pruning criteria are regarded
as the indicators for redundant filters and have been stud-
ied [17, 26, 24], e.g., filter L1-norm [19] and filter Geomet-
ric Median [14]. Unlike the traditional compression, more
recent conditional computing based methods [2, 9] selec-
tively switch the channels on/off based on the runtime acti-
vation. However, such methods still need to deploy the en-
tire complex models to maintain the representation capacity
for selections, and hence they are not suitable for systems
with tight memory constraints. Also, the effectiveness of
the above-mentioned pruning approaches on the more com-
plex semantic segmentation models is seldom discussed.

Currently, a research gap exists for pruning methods that
are catered to semantic segmentation networks. As shown
in our experiments, when existing pruning methods on clas-
sification networks (i.e., [20] and [14]) are applied to se-
mantic segmentation networks, the pruned model suffers
from substantial performance degradation. On the other
hand, addressing the critical role of contextual information
in semantic segmentation, our work utilizes the contextual
priors to guide the pruning of unimportant channels, and the
empirical results show that our framework leads to compact
models that outperform the above-mentioned model com-
pression approaches and also the state-of-the-art conditional
computing based acceleration method.

3. Proposed Method
In this section, we first present the intuition behind

our Context-aware Pruning framework for compressing
segmentation networks, before describing the proposed
Context-aware Guiding Module (CAGM) and accompany-



(a) Basic CAGM (b) CAGMs in Pyramid Pooling Module

Figure 1. Given an input feature map Mi ∈ RCi×Hi×Wi in layer i, CAGM first calculates the Channel Affinity Matrix Ai ∈ RCi×Ci .
Then, the squeezing operation is applied to compute the Context Guiding Vector Vi ∈ RCi×1, which carry the adaptive penalty strength
for the corresponding scaling factors in the BN layer during CAGS. Note that we only use the CAGM during backward pass to penalize
the scaling factor. After sparsification, CAGM can be removed without affecting the output. (a) shows the basic CAGM in a certain layer,
and (b) illustrates how the CAGMs are positioned within the Pyramid Pooling Module.

ing Context-aware Guided Sparsification (CAGS).
Unlike image classification, semantic segmentation em-

phasizes more on local-to-global features aggregation [37,
8, 35]. Our method exploits the property wherein spatial
semantic contextual information can be captured via multi-
scale pooling or downsampling [37, 35, 4], which are fur-
ther fused via various strategies to facilitate pixel-wise pre-
diction. However, from the high-level semantic features
that embed such contextual information, the associations or
combinations of different channel maps may also contribute
differently towards useful contextual information. For ex-
ample, in a well-trained network, a particular association
of channels activation in the feature maps may represent
specific useful context with semantic meaning (e.g., driv-
ing lane) for a semantic class (e.g., car), while a different
channels association may provide another contextual hint.
Thus, to condense such knowledge, channels that always
provide useful contextual clues under diverse inputs should
be preserved, while others can be considered for removal.

Most existing pruning methods ignore such channels as-
sociation on features, and thus the pruned semantic segmen-
tation model performs poorly when channels with influen-
tial contextual information are removed. However, it is not
straightforward to directly measure channel contextual im-
portance, since different contextual information may come
from different channels and they may not be independent
to each other. Our framework leverages the channel maps
affinity for guiding structured sparsification to discover con-
textual informative channels and exploit the contextual re-
dundancy for pruning semantic segmentation networks.

3.1. Context-Aware Guiding Module (CAGM)

As shown in Figure 1, to quantify the channel’s associ-
ation on high-level feature maps that constitutes contextual

information, we propose the Context-aware Guiding Mod-
ule (CAGM), which is applied to the feature maps adjacent
to a pooling layer on top of the original network. CAGM
measures the integrated channels interdependency into vec-
tor layer-wise, namely Context Guiding Vector, which is
used to direct the contextual informative channels selec-
tion in Context-aware Guiding Sparsification (CAGS) (dis-
cussed in Section 3.2).

Mathematically, we denote the feature maps in layer i as
Mi ∈ RCi×Hi×Wi , whereCi is the number of channels,Hi

andWi represent the spatial size. CAGM first calculates the
symmetrical Channel Affinity Matrix Ai ∈ RCi×Ci from
Mi.

The feature maps Mi ∈ RCi×Hi×Wi are reshaped into
Pi ∈ RCi×Ni , whereNi = Hi×Wi is the squeezed spatial
size. Next, each element in Ai is obtained via a dot product
of the reshaped feature maps:

aij,k = Pij,: ·Pik,:, (1)

where aij,k indicates the affinity level between channel j and
channel k in layer i. Here, we adopt the dot product simi-
larity, which considers the vectors in-between angle and the
magnitude.

Secondly, from the obtained Channel Affinity Matrix A,
CAGM computes the Contextual Guiding Vector β in each
layer, which integrates the affinity of channels into scalars.
Considering row j in Ai ∈ Ci × Ci, each element aij,: rep-
resent the affinity level between the channel j and the re-
maining channels in layer i. Then, we normalize aij,: into
the same scale, i.e., between zero to one, and then squeeze
aij,: into one dimension using the summation

∑
k a

i
j,k for

integration.



Finally, the Contextual Guiding Vector βi is obtained by:

βij =

∑
k a

i
j,k −Min(

∑
k a

i
:,k)

Max(
∑
k a

i
:,k)−Min(

∑
k a

i
:,k)
∈ [0, 1], (2)

where Max(·) and Min(·) compute the maximum and
minimum value along the channel dimension. We denote
each scalar in β as the Guiding Factor, where βij is the
Guiding Factor for channel j in layer i. Iterating all chan-
nels in this layer i, we can acquire their corresponding
Guiding Factor, which represents individual integrated in-
terdependent level with other channels given the network
input.

Since the activation on feature maps varies from the net-
work inputs, the corresponding β will be input-dependent
as well. To incorporate the mini-batch training, we conduct
additional min-max normalization on β along the batch di-
mension each mini-batch before CAGS, in order to achieve
the batch-dependent integration. In this way, both the nu-
merical stability and scale of β are maintained. It is worth
mentioning that no additional trainable parameters or super-
vision are introduced in this module, and it is also different
from the self-attention mechanism.

Note that, for SegNet, our CAGMs are applied to the
feature maps in the encoder part, in which, multiple pooling
and sub-sampling operations are implemented to extract the
potential spatial context and to achieve translation invari-
ance over spatial dimension. Similarly, for PSPNet or IC-
Net with a dilated backbone, our CAGMs are concatenated
to the Pyramid Pooling module, where the features carry
richer sub-region contextual information in different scales.
In Figure 1, we illustrate such design, and the ablation study
in Section 5 validates its effectiveness.

3.2. Context-aware Guided Sparsification (CAGS)

As the CAGM is applied over the well-optimized un-
pruned models, the initial β is able to reflect the meaning-
ful channel-to-channel interdependency information from
different context. However, the computed β is dependent
to each input. To leverage β under all given data, we in-
troduce the Context-aware Guided Sparsification (CAGS),
which empirically proves to be valid for contextual infor-
mative channels selection.

For notation, given a model Φ with the parameters set θ,
we first denote the vanilla loss function for semantic seg-
mentation in Equation 3:

L(θ) =
1

n

n∑
k=1

J(Yk; Φ(Xk, θ)) +Rw(θ), (3)

where Xk ∈ R3×H×W and Yk ∈ RH×W are the kth in-
put RGB image and its pixel-wise semantic labels, k =
1, . . . , n. J(·) is the pixel-level standard segmentation loss.

Mostly, we wish to minimize the standard loss together
with the regularization term Rw (e.g., L2 regularization) on
the parameters set to achieve a better generalization and to
avoid over-fitting.

To enable the CNNs to obtain better generalization and
faster convergence, batch normalization (BN) [18] has been
generally employed in most modern architectures, and it can
be formulated as follows:

y = γ
x− µ√
σ2 + ε

+ β, (4)

where µ and σ are the statistical mean and standard devia-
tion over the mini-batch input features. The affine param-
eters γ and β are the learnable scaling and shifting factors.
For channel pruning, the scaling factor γ in the BN layers
can be an importance indicator for the corresponding chan-
nels. Channels with close-to-zero γ can be regarded as re-
dundant since it is scaled to near-zero activation and they
contribute less to the prediction.

To learn the redundant channels, the straightforward at-
tempt is to induce sparsity on the whole scaling factors set
ζ with vanilla L1 regularization [20] along with L(θ):

min
θ
L(θ) + λ

∑
γ∈ζ

Rs(γ), (5)

where Rs(·) = | · | is the regular sparsification term and λ
is a constant to determine the global sparsification strength.

While this approach can enforce the selective γ to zero,
it will lead to unnecessary performance loss and misclassi-
fication in semantic segmentation because the scaling fac-
tors of informative channels are penalized equally to others.
This leads to unsatisfactory pruning results. We consider
such an approach as our baseline for comparison (see Fig-
ure 2). In fact, when different channels combination or as-
sociation provide different contextual hints, this provides a
prior to help differentiate useful channels. The sparsifica-
tion penalty should be de-emphasized for the channels that
give overall useful information from the input images.

As such, we incorporate the Contextual Guiding Vector
β as a prior to the sparsification of channel-wise scaling fac-
tors to adaptively impose different penalty strength, namely
Context-aware Guided Sparsification (CAGS):

min
θ
L(θ) + λ1

∑
γ∈ζ/δ

Rs(γ) + λ2
∑
γ∈δ
β∈δ′

(1− β)Rc(γ), (6)

where ζ and δ are the scaling factors set over all the BN lay-
ers in Φ, and over the selective BN layers with the CAGM
respectively. δ′ is the corresponding set of guiding factors.
Note that Rc(·) is the contextual penalty term for sparsi-
fying the scaling factor with the context guiding factor β,
where Rc(·) = | · | and is multiplied with (1 − β) accord-
ingly. Furthermore, λ1 and λ2 are the hyperparameters to



Dataset Methods mIoU(%) #Params(M)(%↓) #FLOPs(G)(%↓)

C
am

V
id

Se
gN

et

Unpruned 55.60 29.45 106.73
FPGM[14] 52.54 15.63(46.92%↓) 32.95(69.13%↓)

NS-20%[20] 54.78 12.25(58.40%↓) 47.81(55.20%↓)
BN-Scale-20% 55.73 12.50(57.39%↓) 44.54(58.27%↓)

Ours-20% 57.12 11.47(61.05%↓) 53.14(50.21%↓)
Ours-30% 56.37 6.03(79.52%↓) 30.01(71.88%↓)

C
ity

sc
ap

es

PS
PN

et
10

1

Unpruned 78.40 70.44 557.04
FPGM[14] 74.84 36.09(48.76%↓) 280.68(49.61%↓)

NS-60%[20] 75.70 48.47(31.19%↓) 368.03(33.93%↓)
BN-Scale-60% 74.88 48.81(30.71%↓) 370.49(33.49%↓)

Ours-60% 77.82 47.84(32.08%↓) 363.21(34.80%↓)
Ours-70% 75.27 39.74(43.58%↓) 296.25(46.82%↓)

PS
PN

et
50

Unpruned 76.99 51.45 403.00
FPGM[14] 74.59 27.06(47.40%↓) 207.31(48.56%↓)

NS-50%[20] 73.57 23.61(54.11%↓) 199.78(50.43%↓)
BN-Scale-50% 73.85 23.59(54.15%↓) 199.43(50.51%↓)

Ours-60% 75.59 27.31(46.92%↓) 233.67(42.02%↓)
Ours-70% 73.94 23.78(53.78%↓) 203.19(49.58%↓)

IC
N

et

Unpruned† 64.59 12.21 40.13
FPGM[14] 62.00 6.45(47.18%↓) 22.96(42.79%↓)

NS-60%[20] 60.02 6.90(43.49%↓) 22.75(43.31%↓)
BN-Scale-60% 59.68 6.96(43.00%↓) 22.82(43.13%↓)

Ours-60% 62.38 5.56(54.46%↓) 21.16(47.27%↓)

Se
gN

et

Unpruned 56.10 29.45 326.59
FPGM[14] 51.60 15.63(46.92%↓) 100.51(69.22%↓)

NS-20%[20] 56.85 11.85(59.76%↓) 188.16(42.39%↓)
BN-Scale-20% 59.95 11.92(59.52%↓) 150.47(53.93%↓)

Ours-20% 61.16 10.76(63.46%↓) 178.23(45.43%↓)
† Train from scratch

Table 1. Quantitative pruning results on CamVid and Cityscapes test set.

determine the basic penalty strength on the regular penalty
term Rs(·) and the contextual penalty term Rc(·).

When feeding different inputs during the forward pass,
we consider the channels indicating overall high channel-
to-channel interdependency to be contextual informative.
Moreover, the contextual importance that is measured by β
can also provide guidance for sparsification by using term
(1 − β) in Equation 6. We denote it as the channel-wise
contextual sparsification guidance. The larger the integrated
interdependency level, the smaller the sparsification penalty
strength that will be enforced due to the smaller sparsifica-
tion guidance. Our proposed CAGS tends to preserve these
channels during the scaling factors sparsification and penal-
ize the rest of the channels relatively more. During back-
propagation along with the standard loss, CAGS enables
the model to learn to balance the segmentation target with
the aim of selecting informative channels under the guid-
ance prior. Each guidance (1− β) adaptively scales the L1
penalty gradient for the channel-wise γ ∈ δ, i.e. imposing
less force on the contextually important channels.

As mentioned in the previous section, our purpose is to
prune channels and preserve important contextual informa-
tion as much as possible. After several epochs inducing

sparsity with CAGS, the whole scaling factors set ζ of the
cumbersome network become sparse, enabling us to deter-
mine the useless channels with the smallest scaling factors
γ. Finally, we obtain a compact model after pruning and
finetuning. We will provide ablation studies to illustrate the
effectiveness of the proposed framework.

4. Experiments
We empirically evaluate the performance of our method

on various networks and two benchmarks (i.e., CamVid [3]
and Cityscapes [7]). The details of benchmarks are de-
scribed in the supplementary material.

4.1. Implementation Details

The implementation of our framework includes three
stages as follows: normal training, sparsity inducing, and
pruning and finetuning.

4.2. Normal Training

For CamVid dataset, the initial learning rate is set to
0.01, and we apply the cosine annealing decay policy
1
2 · initial lr · (1 + cos( iter

total iterπ)) for 450 epochs train-



(a) Input Image (b) Ground Truth (c) NS [20] (d) BN-Scale (e) Unpruned (f) Ours

Figure 2. Qualitative results on CamVid (top) and Cityscapes (bottom). The first row visualizes CamVid prediction results from SegNet
with ratio 20% and the last two rows are from the Cityscapes dataset on PSPNet101 with ratio 60%. The white rectangle highlights the
regions where our approach is able to preserve more detailed information compared to the baseline.

ing in mini-batch size 8. We employ a stochastic gradient
descent (SGD) optimizer with momentum coefficient 0.9
and weight decay coefficient 0.0005.

For Cityscapes, we trained SegNet [1] with 512×1024
resized input for 450 epochs in batch size 8, and Adam op-
timizer is used. For PSPNet [37], we randomly crop the
input images into the size 713×713 and train the model us-
ing Inplace-ABN [30] and SGD optimizer with momentum
for 200 epochs. To train ICNet, we use the same setting
from PSPNet but with inputs in full size. We employ a poly
decay strategy with power 0.9 on the learning rate, which is
multiplied by (1− iter

total iter )0.9 in each iteration. The ini-
tial learning rates are 0.001 for SegNet, and 0.01 for PSP-
Net and ICNet. In addition, multiple data augmentations are
adopted, such as random scaling, random rotation, random
translation, and random flipping. Due to the performance
loss when using the pretrained PSPNet50 backbone in the
Caffe framework for ICNet, we re-implemented ICNet and
trained it from scratch for our evaluation, following the im-
plementation in the original paper.

4.3. Sparsity Inducing

Before pruning, we apply our CAGM on the optimized
models after the normal training stage first and then induce
sparsity on the scaling factors γ with CAGS in a few epochs,
to distinguish the contextual informative channels from the
given training data.

After CAGS, the magnitude of scaling factors γ indi-
cates the channel-wise saliency considering the contextual
information, and can be used for pruning. The hyper-
parameters λ1 and λ2 are set to 0.0001 and 0.001. We pro-
vide an ablation study on such settings in Figure 3, where
the sparsity level with λ in different values are shown, and
λ1 = 0, λ2 = 0 represents the original model. λ2 is always
10 times as large as λ1, in order to balance the effect of mul-
tiplying the guidance term (1−β) ∈ [0, 1]. Note that, since

CAGMs are applied to provide pruning guidance only, they
can be harmlessly removed after inducing sparsity.

4.4. Pruning and Finetuning

Each scaling factor γ in BN regulates the channel out-
puts into various magnitude. The lesser the scaling factor,
the lesser contribution its channel makes to the final predic-
tion. Therefore, we can discard channels with the smallest γ
in a global and greedy manner. Instead of setting layer-wise
prune ratios, we assign one global prune ratio for reference
and remove channels based on their channel-wise impor-
tance global ranking via one-shot pruning. In the supple-
mentary, we show the pruned architectures that are deter-
mined automatically with our framework.

Note that the removal of a specific channel is equiva-
lent to removing a convolution kernel in the previous layer.
To maintain the network architecture, we also need to re-
move the following channel in all the incoming convolu-
tion kernels. To avoid the case where all pruning candidate
channels are within the same layer, we preserve 10% chan-
nels in each layer. We adopt the same pruning strategy for
pruning the residual block as the prior works, where the last
convolution layer and downsampling layers are preserved to
match the feature volume for summation. For SegNet, the
max-pooling indices are shared in-between layers. Thus,
for channels that are determined to be removed in either the
Encoder or the Decoder part, their corresponding channels
for indices sharing should also be pruned.

Since there is an inevitable performance drop after prun-
ing, we finetune the pruned models in the same setting as
the training stage, but with a smaller learning rate. On
Cityscapes, the finetuning epochs is 50 for PSPNet and IC-
Net, and is 100 for SegNet. On Camvid, SegNet is finetuned
for 200 epochs. Finally, the compact models are evaluated
based on the given metrics and compared with baselines that
are re-implemented in the same finetune settings.



4.5. Baselines

Existing pruning methods are not specifically tailored
for semantic segmentation networks. As such, for com-
parison, we evaluated the impact of popular baseline prun-
ing methods (originally evaluated for image-level classifi-
cation) on widely-used semantic segmentation models. Our
baselines include BN-Scale, NS (Network Slimming [20]),
FPGM [14] and the recently proposed conditional comput-
ing based method, CCGN [2]. Details of baselines are dis-
cussed in the supplementary material.

FPGM is one of the state-of-the-art pruning methods for
image classification, which prunes filters based on their Eu-
clidean distance with other filters layer-wise. We follow the
pruning criterion formulation and the optimal predefined
layer-wise prune ratio in the literature.

BN-Scale and NS method both use the scaling factors γ
in BN as the pruning indicator. The former serves as a naive
baseline, and the latter is the widely-used pruning method.
In BN-Scale, the original model is directly pruned based on
the scaling factors magnitude after normal training. In NS,
the regular sparsity will be induced on all the scaling factors
before pruning.

Our method and the first two baselines belong to the au-
tomatic pruning approach, while FPGM performs pruning
given the manually specified pruned ratio for each layer and
results in a predefined pruned architecture [21]. The overall
pruning results comparison is illustrated in Table 1, and we
will show the pruning results when FPGM is implemented
in an automatic pruning manner as ours in the supplemen-
tary material. Although CCGN [2] does not prune the orig-
inal network, we adopted it as a baseline as it is the latest
network acceleration method that provides comprehensive
results on semantic segmentation. The acceleration com-
parison is shown in Table 3.

4.6. Quantitative and Qualitative Results

We present quantitative and qualitative comparisons in
Table 1 and Figure 2. Note that the reduction in #Params
and #FLOPs may not be consistent due to the pruned chan-
nels selections on different layers. We compare the pruned
models with similar #Params. Additionally, the actual run-
time speedups after pruning with our method, the per-class
prediction performance comparison, and more visualization
comparison on different images will be illustrated in the
supplementary material.

In Table 1, we evaluate the pruned models using
the mean Intersection-over-Union (mIoU), the number of
parameters (#Params), and the floating-point operations
(#FLOPs). #FLOPs of SegNet are reported based on the
input size 512×1024 and 360×480 for Cityscapes and
CamVid, respectively, while PSPNet and ICNet are re-
ported in 713×713 and 1024×2048. All the test results on
Cityscapes are submitted and evaluated by the benchmark

server. Ours-x% denotes the pruning using our method with
a global prune ratio x%. The same notation applies for the
baselines BN-Scale and NS. Note that in the same prune
ratio x%, the reduction on #Params and #FLOPs vary for
different methods, due to the selection differences on chan-
nels to be pruned. Table 1 shows the pruning results on ra-
tios x% that have similar #Params reduction and the closest
performance with the unpruned model. From the results, it
is evident that our approach can effectively reduce #Params
and #FLOPs, compared to all the baselines. Specifically:

1. In terms of #Params reduction, the proposed method
achieves the best pruning performance, in another
word, much efficient pruned architectures are automat-
ically discovered. For instance, for Cityscapes and
PSPNet101, Ours-60% achieves 77.82 mIoU while
NS-60% [20] and BN-Scale-60% can only achieve
75.70 and 74.88 mIoU with a larger number of param-
eters. For SegNet, Ours-20% is able to outperform the
original model with 61% lesser parameters and 45%
fewer FLOPs. These pruned models from the same
unpruned are with similar #Params, but ours is more
efficient.

2. The visualization on Figure 2(f) shows that the pruned
models of our method can preserve most of the pre-
diction precision on small objects from the original
model, while the ones in other baselines lead to infor-
mation loss and misclassification in varying degrees.

5. Ablation Studies
5.1. Pruning Ratio

Large pruning ratio may result in high model capacity
loss leading to the inability to recover the segmentation per-
formance. On the other hand, small pruning ratios will not
lead to effective compression for the given requirements.
Hence, the right balance between the model size and per-
formance is necessary. We compare the model performance
with different pruning ratios after finetuning in Figure 4. It
can be observed that it is possible to maintain original ac-
curacy by keeping a maximal pruning ratio within certain
intervals (e.g., between 0.5 and 0.7 for PSPNet).

5.2. Hyperparameters λ1 and λ2

In Section 3.2, λ1 and λ2 are used to adjust the strength
on the regular sparsification term and the contextual sparsi-
fication term, and in CAGS, pair λ1 = 0.0001, λ2 = 0.001
is preferable. As shown in Figure 3, different λ pair re-
sults in models with different sparsity level on γ. When
a larger λ pair forces more γ towards zero, the model’s
performance will be negatively impacted as well. For in-
stance, in the PSPNet101 experiments on Cityscapes valida-
tion set, while smaller λ pair, i.e., λ1 = 0.0001, λ2 = 0.001



(a) PSPNet101 (b) PSPNet50

(c) ICNet (d) SegNet

Figure 3. Ablation study on different values of λ1 and λ2 pair.
Histograms in different colors stand for the frequency of scaling
factors γ in the models under different λ pairs after CAGS.

(a) PSPNet101 (b) PSPNet50

(c) ICNet (d) SegNet

Figure 4. Ablation study on pruning ratio and model performance.
Each bar represents the number of parameters after pruning with
different global ratio, and the solid line denotes their correspond-
ing mIoU on Cityscapes validation set.

(in green), results in mIoU of 77.57 and induces suitable
sparsity from the unpruned (in blue), larger λ pair, i.e.,
λ1 = 0.0001, λ2 = 0.001 (in red), leads to a significantly
sparser model with 63.63 mIoU.

5.3. Position of CAGM

We placed CAGM adjacent to the pooling layers, where
the feature maps with the potential spatial context informa-
tion are leveraged. To justify, in Table 2, we conduct an ab-
lation experiment that applies CAGM on all layers (denoted
as CAGM on All). It shows that such positioning in our
framework (CAP) is sufficient, since it consistently leads to

Models CAP CAGM on All Prune Ratio mIoU(%)

PSPNet101 X 0.6 78.23
X 0.6 77.99

PSPNet50 X 0.7 74.31
X 0.7 73.21

SegNet X 0.2 60.98
X 0.2 57.85

ICNet X 0.6 63.25
X 0.6 61.22

Table 2. Ablation study on the position of CAGM. CAP is our pro-
posed framework, and CAGM on All is when we apply the CAGM
on all layers. The mIoU in different architectures are reported on
Cityscapes validation set.

Methods mIoU(%) #Params(M)(%↓) #FLOPs(G)(%↓)
Unpruned 76.57 51.45 403.0
CCGN*[2] 71.90 70.44(0%↓) 23.70%↓

CCGN-1 [2] 74.40 70.44(0%↓) 23.50%↓
CCGN-2 [2] 74.70 70.44(0%↓) 5.00%↓
Ours-60% 75.65 27.31(46.92%↓) 233.67(42.02%↓)

* Without pretrain

Table 3. Comparison with CCGN [2] on Cityscapes validation set.

better pruning performance compared to CAGM on All, es-
pecially on lightweight models. The reason could be that
the lightweight models have a relatively larger downsam-
pling rate within fewer layers and feature maps after each
downsampling operation capture richer spatial information.
Using such information as guidance benefits the evaluation
on the contextual informative channels. And when other
feature maps that contain less useful information are also
utilized by CAGM, the advantage will be less noticeable
and requires more computation in run-time memory.

6. Conclusion
The proposed Context-aware Pruning framework uti-

lizes channels association to exploit parameters redundancy
in terms of contextual information for accelerating seman-
tic segmentation. Our method effectively preserves con-
textual informative channels after pruning. Experiments
on benchmarks show our advantages over popular pruning
baselines for both large and lightweight state-of-the-art ar-
chitectures. Our framework can complement other pruning
schemes (e.g., iterative pruning) or compression techniques
(e.g., quantization) to improve the performance further, and
also has great potential for other challenging vision tasks.
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