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ABSTRACT
Memory integrity trees are widely-used to protect external memories
in embedded systems against bus attacks. However, existing methods
often result in high performance overheads incurred during memory
authentication. To reduce memory accesses during authentication,
the tree nodes are cached on-chip. In this paper, we propose a cache-
aware technique to dynamically skew the integrity tree based on the
application workloads in order to reduce the performance overhead.
The tree is initialized using Van-Emde Boas (vEB) organization to
take advantage of locality of reference. At run time, the nodes of
the integrity tree are dynamically positioned based on their memory
access patterns. In particular, frequently accessed nodes are placed
closer to the root to reduce the memory access overheads. The pro-
posed technique is compared with existing methods on Multi2Sim
using benchmarks from SPEC-CPU2006, SPLASH-2 and PARSEC
to demonstrate its performance benefits.
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1 INTRODUCTION
Main memories, being an integral part of all embedded systems,
become an obvious target for attackers whose motives are to exploit
leakage or modification of information. Integrity trees are commonly
used to provide security against replay, splicing, and spoofing bus
attacks in external memories. However, the existing schemes that
use memory integrity trees suffer from high computational over-
heads [5] [7] as they do not address the impact of the system’s per-
formance for traversing large trees. This poses an enormous security
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challenge as embedded systems generally have tight computational
constraints with real-time requirements.

In an integrity tree, the memory contents are stored in the leaf
nodes after encryption/hashing. A hierarchical tree structure is built
on top of the leaf nodes by recursively applying a primitive authen-
tication technique (e.g. MAC, hash). Authentication of a leaf node
would involve verification of each node against its parent node, from
the leaf node up till the root of the tree. A copy of the root, stored
on-chip, is assumed to be safe from attack. After the final step of
successfully verifying the root node with its copy on-chip, data is
considered safe and forwarded to the data cache. The whole process
which entails verification at each level of the tree, increases the ex-
ecution time substantially. One of the earlier versions of integrity
tree is the Bonsai Merkle tree [8]. A number of variations have
been proposed to the original Merkle tree in order to enhance the
performance with size, cost, and complexity trade-offs [3]. One such
approach is using a dedicated TreeCache for caching the integrity
tree [2]. However, such approaches may lead to overall performance
degradation due to cache contention. Using a large TreeCache to
reduce the cache misses of the tree nodes becomes prohibitive for
low-cost embedded systems.

In this paper, we propose a cache-aware memory integrity tree
organization to fully take advantage of a dedicated TreeCache to
reduce the memory bandwidth for verification. In order to further
reduce the memory authentication overhead, we propose a method
called Cache-aware Dynamic Skewed Tree (CADST) that leverages
the proposed memory layout to move the frequently accessed nodes
closer to the root node of the integrity tree at run time. This led to
further reduction in the overall number of verification levels.

2 SECURITY MODEL
In Fig. 1, we present the security design model. The memory con-
troller (MC) is responsible for the authentication process. It consists
of of the following sub-parts:
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(1) Encryption/Decryption Unit: We employ AES-128 as the
encryption standard. This unit can be implemented as a hard-
ware custom block to accelerate encryption/decryption.

(2) Integrity Checker (IC): Each tree node is matched to its parent
node. In case of a mismatch, an alarm is raised.

(3) Root Node: A copy of the root node of the tree is stored on-
chip and is assumed to be safe. The final requirement for data
to be considered safe is that the root node of the tree must
match with the root value stored on-chip.

The process of authentication begins with a read/write request sent
to an address in the Protected Data region of the memory.

(1) The leaf node corresponding to that specific address is for-
warded to the AES unit for decryption followed by verifica-
tion.

(2) For verification, a request to access the parent node in the
Integrity Tree region is initiated by the MC for the TreeCache.

The latter can lead to the following outcomes:

• Request sent to TreeCache is met with a cache hit: TreeCache
stores the decrypted data. Thus the requested node value can
be directly sent to the Integrity Checker for matching.
• Request sent to TreeCache is met with a cache miss: The

node is then forwarded from the Integrity Tree region of the
external memory to the AES unit for decryption. Once de-
crypted, it is then sent to the Integrity Checker to be matched
with its child node.

The above mentioned steps are performed recursively till we reach
the root node of the tree. The root node is compared against the root
value stored on-chip and if they match, data is passed to the data
cache for processing. In case of a write request, MC will then initiate
a command to re-structure the tree.

3 PROPOSED CADST FRAMEWORK
3.1 Baseline
In this work, we have chosen Tamper Evident Counter (TEC) tree as
our baseline. TEC tree provides security using Block AREA (Added
Redundancy Explicit Authentication) technique. Tree nodes can be
divided into two categories, Data chunk and Counter chunk, which
store either data or count values respectively. A nonce, which is
unique to each node, is added to each tree node before encryption.
Nonce comprises of a count, and address of each node. Count value,
representing the number of write requests performed on each node, is
added to detect replay attacks. For an authentication to be successful,
the count values of any given node must match with the value stored
in its immediate parent node. An important advantage of the TEC
tree is it relies on block encryption for authentication which provides
for confidentiality at no additional cost. Encrypted data is resilient
towards stolen memory attacks as well. Although we have chosen
TEC tree as our baseline due to the above-mentioned advantages, the
proposed technique can be adapted to different versions of integrity
trees (e.g. Hash Trees, Merkle Tree), and is complementary to prior
works based on caching tree-nodes and increasing arity. The original
TEC tree does not cache tree nodes. We have implemented TEC tree
with caching of tree nodes on a dedicated TreeCache.

To design integrity trees that can take advantage of a dedicated
TreeCache, the most straightforward approach is to enforce the size

of the tree nodes to be the same as a single cache line (CL). For
example in SGX, the granularity of the Memory Encryption Engine
(MEE) is fixed to 512 bits (same as CL size) and the MEE tree
data structure is designed based on this constraint. In integrity trees
employing AES block encryption, continuous memory addresses are
segregated into blocks and a fixed number of blocks are combined
to meet the CL size. These blocks are encrypted/decrypted together.

3.2 Proposed Tree Node Structure
For the proposed tree structure, the Protected Data are divided into
equal sized blocks and each block is used to create a single Data
Chunk (DC) as can be seen in Fig. 2. A DC comprises of data con-
catenated with a nonce value as shown in Fig. 2. Nonce is created
using a count value, ci. This value equals the number of write re-
quests made to the DC. ci concatenated with the node ID, ni, making
the nonce unique to each node. Other attributes of the DC are as
shown in Fig. 2. pi, si, LRi denote the parent, sibling, side of ni
respectively. pi stores the node ID of the parent and si stores the
node ID of the sibling of ni. LRi denotes whether the node is a left
child or a right child to its parent. These attributes help in skewing
the tree as discussed later in Section 3.4. Each node has a separate
counter. This makes overflow of counters a rare scenario. All the
DCs are encrypted using block AES-128 encryption and are stored
in the Protected Data region of memory.

The counter, ci, are stored in the off-chip memory in a hierar-
chical tree structure. In the rest of the paper, we refer to Counter
Chunk (CC) as a block where the counters are stored. Each CC also
comprises of its own nonce and other attributes, similar to that of
a DC. An entire CC is encrypted as a single block before being
stored off-chip in the Integrity Tree region of external memory. This
scheme is recursively applied to subsequent levels of the tree to
form CCs till we obtain a single CC, called the root node of the tree.
The count of the root node is stored securely on-chip. Thus, the tree
structure helps to reduce the on-chip memory overhead to a single
root node, while providing full memory integrity.
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Figure 2: Standard memory integrity tree structure

3.3 Initializing Tree Structure with Cache aware
Organization

We start with a binary tree of height h, which is equal to logN, for a
tree with N elements. Conceptually, we split the edges at the middle
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level of the tree, between nodes of height h/2 and h/2 + 1. This
partitions the tree into a top recursive sub-tree A of height h/2, and
several bottom recursive sub-trees B1, . . . , Bk of height h/2. If all
non-leaf nodes have the same number of children, then there will be√

N recursive sub-trees at the bottom, each with roughly
√

N nodes.
After splitting, we group all the upper sub-tree elements followed by
lower sub-tree elements. The vEB layout is recursively applied to
each sub-tree. At each step of recursion, size of the sub-tree being
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Figure 3: Proposed vEb memory integrity tree structure

grouped is the square-root of the size of the sub-trees in the previous
step. Consequently, at some point we will be grouping sub-trees that
can be retrieved in a single memory transfer, and this final partition
creates a tree with sub-trees of size equivalent to a single CL.

The vEB version of the standard memory integrity tree in Fig 2
is shown in Fig. 3. The node ID of the CCs differ in both the trees.
We use the vEB layout as the starting point of our tree. Based on
this layout, the cache lines will be filled as shown in Fig. 3. It can be
observed that for the proposed vEB memory integrity tree structure,
both child and parent node will be cached in the same line. This
reduces number of cache misses during a memory access because
during verification, the parent of a child node is always accessed.
Note that the proposed layout of the memory integrity tree is cache
aware with the exception of the assumption that each sub-tree is
aligned with the cache block boundaries.

3.4 Proposed Dynamic Skewing of Integrity Tree
Skewing operation is performed after write requests. We check if the
ci value of a given chunk is similar to its neighbourhood. If a chunk
has higher ci value than its immediate neighbours, then it should
be shifted one level up, closer to the root node. In this manner, we
are able to reduce the height difference between the node and the
root. This reduces the number of verifications to be performed. The
ShiftUp operation is performed before nodes are cached so that upon
eviction, they are placed at their most recent position. In order to
take advantage of the proposed memory layout, ShiftUp must take
into consideration that the nodes forming a single sub-tree need
to be kept intact in order for the cache misses to remain minimal.
To avoid this, the re-structuring operation should be performed on
sub-trees and not singular tree nodes. The re-balancing process and
verification process happen concurrently. The decrypted counter

chunks are checked for re-balancing during the verification process.
All changes are made prior to re-encrypting the nodes at the end of
the verification process.

ShiftUpSubTree: Let T be the sub-tree to be checked for shifting.
And let Q be its parent sub-tree. We should note here that the count
of a sub-tree is equal to the count of its root node. The process of
shifting is as shown in Fig. 4.

(1) Check if, ci, of T is greater than its corresponding sibling sub-
tree count, c j , by 1, and is also greater that its uncle sub-tree
count, ck.

(2) Exchange node T with its uncle sub-tree.
(3) Exchange the new children sub-trees of Q.
(4) Update the counter value of all the nodes of Q.
(5) Recursively perform steps 2-4 for all sub-trees on the path

from T to the final sub-tree with the root node.

AB

C

B C

A

B A

C

(a) (b) (c)

Figure 4: Shifting up sub-tree C: a) Exchanging C with uncle A,
(b) rotation, (c) final state

3.5 Authentication
To avoid cache contention, we use a separate TreeCache on-chip
to store the tree meta-data. Algorithm 1 describes the steps for
verification on the integrity tree.

Algorithm 1: Dynamic Skewed Tree

begin
Initialize tree with all data elements as data chunk on leaf

nodes
if (memory access request(addr)) then

if read_request(addr) then
ReadNCheck(addr)

end
if write_request(addr) then

ReadNCheck(addr)
WriteNUpdate(addr)
Rebalance_flag← rebalance_check(addr);

end
if Rebalance_flag then

ShiftUpSubTree(addr);
end

end
end
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ReadNCheck: This function is called when there is a read request
sent to the Protected Data region that has not been cached and thus
requires verification.

(1) Call the requested DC’s parent CC. If it is cached in the
TreeCache, return the cached data for matching. The process
completes, otherwise

(2) Fetch CC from external memory.
(3) Forward decrypted CC to IC for verification. If verified, place

the contents of the child chunk into the TreeCache and pro-
ceed to verify the parent chunk (note that this step only applies
when a CC is being verified).

(4) Repeat Step 1 until a cache hit is encountered or the root node
is reached.

(5) If root node verifies correctly, return the requested data.
WriteNUpdate: This function is called when there is a write re-

quest sent to the Protected Data region that is not cached and thus
requires verification.

(1) Call the requested DC’s parent CC. If it is cached, return the
cached data for matching. Also, increment the ci value. The
process completes, otherwise

(2) Fetch CC from external memory, increment ci.
(3) Check for ShiftUpSubTree.
(4) Place modified decrypted CC in TreeCache and forward to

IC for verification.
(5) Repeat Step 1 until a cache hit is encountered or the root node

is reached.
(6) If root node verifies correctly, return the requested data.
WriteBack: This function is performed upon eviction of a dirty

CC from the TreeCache.
(1) Update the CC in the external memory.
(2) Recursively update the parent CCs, if not cached, up till the

root with the new ci values.

4 EXPERIMENTAL RESULTS
For our evaluations, we simulated applications from SPEC-CPU2006,
SPLASH-2, and PARSEC benchmark suites on Multi2Sim [9]. We
ran the benchmarks for four different tree architectures with a dedi-
cated TreeCache: 1) Conventional Balanced TEC Tree (BTEC) [4],
2) Cache Aware Balanced TEC Tree (CABTEC) 3) Dynamic Skewed
Tree (DST) [10, 11], 4) Proposed Cache Aware Dynamic Skewed
Tree (CADST). BTEC [4] is a balanced integrity tree employing
block-level AREA encryption as described in Section 3.1. CABTEC
is BTEC tree implemented with the vEB layout in memory. DST [10]
skews the tree nodes depending on frequency of access with the most
frequently access closer to the root. The DST implementation does
not employ the vEB memory layout. CADST is the proposed method
where we initialize the DST with the vEB layout and use ShiftUp-
SubTree to skew the tree during run time. We have presented results
for four different TreeCache configurations i.e. 16Kb and 8KB size
with 128, 64 byte cache lines.

Authentication Time. Fig. 6 compares the normalized perfor-
mance of all four models. Our performance metric is based on the
run time required to perform the memory authentication. It can be
observed that incorporating a cache-aware memory layout for the
balanced integrity tree (CABTEC) can reduce the authentication

Table 1: Architectural parameters used in simulations

Architectural Parameters Specifications
Clock Frequency 1 GHz

Data Cache 256 KB
TreeCache 16KB/8KB

Cache Latency 4
Replacement Policy LRU

Write Policy Write Back
External Memory Latency 100

AES Latency 40

time by approximately 14% compared to BTEC. By introducing
the dynamic skewed tree mechanism which leverages on the cache-
aware memory layout, the proposed CADST achieves an average
speedup of approximately 25% and 17% over BTEC and CABTEC
respectively. When compared to the DST method without cache-
aware memory layout, the proposed CADST method achieves a
performance overhead reduction of approximately 15%.

It is evident that the benefits of the proposed method depends
on the application and its workloads. The height of the balanced
integrity trees range from 11 to 26 levels. Large trees obviously
results in a lot of storage and run time overhead, and thus such
application always have a higher potential for improvement. Also,
for memory intensive applications such as Lu_cb, Mcf, Omnetpp,
Xalancbmk, and Gcc (≥1 memory access per 1000 instructions), the
benefit from skewing are more pronounced. Fig. 6 shows the effect
of varying the TreeCache size and the block size on the performance.
In general, a larger cache reduces the number of off-chip accesses
and overall execution time of applications. Having a larger cache
line also reduces the overhead of memory verification due to the
reduction in the levels of the integrity tree. We should also consider
the number of times the average number of CCs are accessed per
DC. As such, we analyzed the memory traffic bottlenecks due the
CC accesses, which is main cause of overhead. Fig. 5(a) shows the
memory traffic bloat (counter accesses per data access) for all the
models. CADST being more cache friendly, reduces the burden of
the authentication and makes fewer access from the external memory
for the CCs in all the applications. The improved performance due to
the vEB layout is also highlighted in the difference between BTEC
and CABTEC models.

TreeCache Miss Ratio. Fig. 5(b) compares the TreeCache miss
ratio between the proposed model and DST with a 16KB size and
64B cache line size. We can observe that the 16KB cache performs
better than an 8KB cache for both the models, as expected. But on
average, the miss ratio improves further by 20% for the model with
vEB structure which can directly be attributed to the customized
memory organisation.

Custom Instructions. Custom instructions (CI) enable the accel-
eration of time critical software algorithms by introducing custom
hardware blocks that are tightly-coupled to the Arithmetic Logic
Unit (ALU). To reduce the latency of encryption/decryption during
memory integrity verification, we evaluate the performance bene-
fits of implementing the 128-bit mix-column AES algorithm as a
custom instruction [6]. For our future work, we plan to develop a
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Figure 5: a) CCs per DC accessed, b) TreeCache miss ratio

programmable memory controller that consists of processors with
custom ISAs that can be adapted to the memory workloads in order
to reduce energy consumption [1]. As such, we have evaluated the
benefits of integrating a custom hardware AES module that is tightly
coupled with the processor in the memory controller. The advantages
of this method is the flexibility of implementing different encryp-
tion/decryption techniques without the need for re-designing a new
memory controller. As can be observed in Fig. 6, the utilization of
CI’s has reduced the authentication time of all the models.

5 CONCLUSION
This paper proposes a dynamic skewed tree implemented with cache
aware algorithms. The nodes in the tree are placed based on their
frequency of access and are cached in a separate TreeCache on-chip.
The tree layout is initialized with a vEB organization to reduce the
memory-cache accesses and the skewing algorithm shifts memory
blocks which form sub-trees so as to maintain minimal number of
cache misses during tree traversal. Experimental results demonstrate
that the proposed cache aware memory layout for a balanced integrity
tree improved performance by approximately 14%. When a cache
aware dynamic skewed tree model is utilized, a gain of about 25%
can be achieved over the conventional balanced integrity tree model.
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Figure 6: Run time for memory authentication with a) 16KB TreeCache, 64B cache line, b) 16KB TreeCache, 128B cache line c) 8KB
TreeCache, 64B cache line d) 8KB TreeCache, 128B cache line
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