
Dynamically Growing Neural Network Architecture
for Lifelong Deep Learning on the Edge

Duvindu Piyasena∗, Miyuru Thathsara†, Sathursan Kanagarajah‡, Siew-Kei Lam§ and Meiqing Wu¶
∗,†,§, ¶Nanyang Technological University, Singapore

{∗gpiyasena, §assklam,¶meiqingwu}@ntu.edu.sg, †mthathsara@outlook.com, ‡ksathursan1408@gmail.com

Abstract—Conventional deep learning models are trained once
and deployed. However, models deployed in agents operating in
dynamic environments need to constantly acquire new knowledge,
while preventing catastrophic forgetting of previous knowledge.
This ability is commonly referred to as lifelong learning. In
this paper, we address the performance and resource challenges
for realizing lifelong learning on edge devices. We propose a
FPGA based architecture for a Self-Organization Neural Net-
work (SONN), that in combination with a Convolutional Neural
Network (CNN) can perform class-incremental lifelong learning
for object classification. The proposed SONN architecture is
capable of performing unsupervised learning on input features
from the CNN by dynamically growing neurons and connections.
In order to meet the tight constraints of edge computing, we
introduce efficient scheduling methods to maximize resource
reuse and parallelism, as well as approximate computing strate-
gies. Experiments based on the Core50 dataset for continuous
object recognition from video sequences demonstrated that the
proposed FPGA architecture significantly outperforms CPU and
GPU based implementations.

Keywords-Deep learning, lifelong learning, continual learning,
incremental learning, self-organization, FPGA

I. INTRODUCTION

Recent advancements in deep learning and computing tech-
nology have enabled deep learning models to be deployed in
a wide range of embedded applications for self-driving cars,
autonomous robots, etc [1], [2]. Such applications typically
encounter settings that are not available during training. Ide-
ally, the models should be able to acquire new knowledge
in real-time, while not interfering with previous knowledge.
This ability is referred to as lifelong learning1 which is now
an active area of research [3]. The following are desired for
lifelong learning in embedded applications.

Real-time learning. In conventional deep neural networks
(DNNs), learning is performed on large data over many hours
or days. However, a lifelong learning model needs to learn
quickly from a few samples in real-time.

Learning at the edge. Deep learning models are usually
trained using GPUs in the cloud, which has several limitations,
e.g., 1) network connectivity cannot always be guaranteed, 2)
privacy concerns of sending data to cloud. Performing learning
on the edge device overcomes these problems.

Custom computing. Embedded systems have tight compu-
tational and memory constraints, and they often run on strict

1The terms continual learning, incremental learning are also used com-
monly in literature.

power budgets. Lifelong learning algorithms deployed on the
edge will need design strategies that take full advantage of the
compute capabilities of the target platform.

Meeting the above requirements is challenging. Firstly, it
has been shown that when connectionist neural networks
are trained incrementally with new knowledge, the models
undergo catastrophic forgetting of previous knowledge [4].
This can be solved naively by storing all the past data and
shuffling them with new data when training on new tasks.
However, it is not practical to store such large datasets due to
memory resource constraints and privacy concerns. Secondly,
back-propagation based learning that is used in state-of-the-art
deep learning models require cloud grade GPU or specialized
accelerators like TPU [5], due to high compute and memory
requirements. Despite this, training a model from scratch
still takes a long time ranging from hours to a few days.
In addition, these cloud grade computing platforms are ill-
suited for deployment in edge devices due to their high energy
consumption. These challenges can only be overcome with
new deep learning models capable of unsupervised lifelong
learning and custom hardware implementations of the same.

In this paper, we propose an FPGA based custom hard-
ware architecture for class-incremental lifelong learning, tar-
geting object classification task in edge devices. The pro-
posed model is based on a Self-Organization Neural Network
(SONN), called Grow When Required (GwR) artificial neu-
ral network [6]. GwR network leverages on local learning
and self-organization with dynamic neuron/connection forma-
tion/pruning. We combined a backbone CNN network as a
feature extractor with the GwR based SONN as a classifier
to achieve lifelong learning, and propose a novel FPGA
architecture for the SONN. Our main contributions are:

• Novel hardware design of SONN that performs class-
incremental learning for object classification. This is the
first work to propose a FPGA architecture for dynami-
cally growing SONN, where the neurons and connections
evolve over time. Previously reported hardware imple-
mentations of SONN have fixed neurons and connections.

• Efficient scheduling methods to maximize resource reuse
and parallelism. Bit-width quantization and approximate
computing are used to reduce hardware complexity.

• Proposed FPGA architecture significantly outperforms
CPU and GPU implementations on the Core50 dataset
for continuous object recognition from video streams.

II. RELATED WORK

A. Lifelong Learning

Lifelong learning refers to learning new tasks efficiently,
while not catastrophically forgetting previous tasks. The cur-
rent approaches fall under three categories: 1) Regularization
2) Architectural 3) Memory Rehearsal [3], [7]. Regulariza-
tion approaches penalize changes to parameters important to
previous knowledge by modifying the regular loss [8], [9],
[10]. Architectural approaches dynamically change the model
architecture over time to accommodate new knowledge [11],
[12]. In memory rehearsal methods, subset of training data are
buffered and replayed when learning new tasks [13], [14].

B. Self-Organization and Lifelong Learning

Our work adopts an architectural approach to address catas-
trophic forgetting with a SONN. SONN is a family of artificial
neural networks, which is used for topology learning of a
feature space through an unsupervised learning method named
competitive learning [6], [15], [16]. Various types of SONNs
have been proposed in literature, with the most popular one
being the Self-Organized Map (SOM) [15], However, the fixed
network size and time-decaying learning rule limit its ability to
learn continuously. The work in [16] proposed to periodically
grow a network of neurons. GwR [6] extends [16] by replacing
the periodic neuron adding criteria with a rule that adds neu-
rons based on network activity. Recently, SONNs have been
used in combination with CNNs to perform lifelong learning
for object classification [12], [17]–[19]. Particularly inspired
by [12], we combine a CNN with a SONN based on GwR
to demonstrate the feasibility of performing lifelong learning
under edge constraints using custom hardware acceleration.

C. FPGA based lifelong learning

The works in [20], [21] propose to accelerate conventional
DNN training using multi-FPGA platforms. Recent works
[22]–[24] propose FPGA based lightweight models partic-
ularly for lifelong learning. The work in [22] relies on a
Hebbian learning rule, while [23], [24] rely on a product quan-
tization strategy for lifelong learning. Similar to the proposed
work, these methods leverage on local learning and learns
quickly from few samples. However, contrary to our work,
they rely on a fixed set of neurons, which limits the ability to
autonomously learn from non-stationary data distributions.

III. PROPOSED LIFELONG LEARNING MODEL

The proposed model, shown in Fig. 1, combines a Convolu-
tional Neural Network (CNN) and a SONN, where the latent
features extracted from the CNN are fed into the SONN that
acts as the classifier. As the model is exposed to new classes,
the SONN evolves while CNN layers remain static.

CNN models trained on large datasets (e.g., Imagenet [25])
have been shown to perform well, as generic feature extractors
[26]. We have used the Resnet-18 CNN model, pre-trained
on Imagenet. The latent features are extracted from the last
convolutional layer (Avg Pool) of Resnet-18 of dimension (Df)
512, and the subsequent Fully-Connected layer is discarded.

The SONN is based on the GwR network [6]. In this paper,
we will only discuss the hardware architecture of the classifier
(i.e. SONN), since there are already many works on hardware
implementation of CNNs [27]–[30].
A. SONN Algorithm

The SONN performs unsupervised learning on input fea-
tures and creates a discrete topology representation of the
feature space using a dynamically growing set of neurons (N)
and connections (C). During training, neurons are added pro-
gressively to better represent input topology, while connections
are formed between similar neurons following the Hebbian
learning principle [31].

Each neuron (i ∈ N) has several parameters: a) weights
vector (wi), which determines neuron position in the feature
space, b) habituation counter (Hi), measure of how frequent
the neuron has fired, c) class probability vector (pi), probabil-
ity of association to all the classes, and d) connectivity graph
(G(Vi, Ei)), graph of connected neurons (Vi) and connections
(Ei). Each connection (c ∈ C) has an associated age (agec).

Algorithm 1 Proposed SONN pseudo-code

1: [Step 1 : Winner Selection Phase (WSEL)]
2: for i = 1 to Ncurr do // inter-neuron loop
3: for j = 1 to Df do // intra-neuron loop
4: disti ←disti + |xj–wi,j |
5: end for
6: if disti < distb1 then
7: {b1, distb1},{b2, distb2} ←{i, disti}, {b1, distb1}
8: else if disti < distb2 then
9: {b1, distb1},{b2, distb2} ←{b1, distb1}, {i, disti}

10: end if
11: end for
12: if (distb1 > distT and H[hb1] < hT) then
13: [Step 2 : Neuron Addition Phase (NADD)]
14: for j = 1. . .Df do // intra-neuron loop
15: wn ← (xj + wb1,j)/2
16: end for
17: hn ← 0 , pn,l ← 1, and pn,j ← 0, j 6= l
18: Connect n with b1, b2 and disconnect b1, b2
19: else
20: [Step 3 : Neuron Train Phase (NTRAIN)]
21: for i = 1. . . .len(neighb1) do // inter-neuron loop
22: for j = 1. . .Df do // intra-neuron loop
23: wi,j ←wi,j + ε ·H[hi] · (xj–wi,j)
24: end for
25: hi ← hi + 1 , pn,l ← pn,l + 1
26: end for
27: end if

Algorithm 1 decribes the training of SONN, which consists
of three main steps: a) Winner Selection (WSEL), b) Neuron
Add (NADD), and Neuron Train (NTRAIN).

1) Step 1. Winner Selection (WSEL): Upon receiving an
input feature vector (x), SONN computes the Manhattan
distance between input (x) and weights vectors (w) of all
neurons and the 2 neurons with the least distance to the input

BMU-1 (b1) and its neighbourhood (Vb1)
neighb1 = {b1 U Vb1}

Input Feature Vector (X)

Winner Selection (WSEL)

Best Matching Unit-1 (BMU-1)
Best Matching Unit-2 (BMU-2)
'Hebbian' connection

SONN (Classifier)CNN (Feature Extractor)

Inference

Training

Classification

Mug

Neuron Addition (NADD)

New
Neuron

New
Connections

Neuron Training (NTRAIN)

Fig. 1: Proposed Model

are selected as best matching units, BMU-1 (b1) and BMU-
2 (b2). The class with maximum probability of association
(argmax(pb1)) is predicted as the classification output. During
training, if BMU-1 is both distant from input (dist > distT)
and sufficiently mature (H[hb1] < hT), a new neuron is added
to SONN to better represent the input (Step 2). Consequently,
neurons that are sufficiently dissimilar to the input and well
habituated are not modified, preventing catastrophic interfer-
ence to consolidated knowledge of the network. On the other
hand, if this condition is not met, BMU-1 and its connected
neighbour neurons (neighb1 = b1

⋃
Vb1) are trained.

2) Step 2. Neuron Add (NADD): If a neuron is added, it
(n) is assigned weights (wn) associated with BMU-1 (wb1)
and input feature vector (x). The class probability vector
of the neuron (pn) is initialized to associate with the class
of the training sample (l). The new neuron is connected
to both BMU-1 and BMU-2, and if a connection existed
between BMU-1 and BMU-2, it is removed. The changes
to the connectivity graphs (G(V, E)) of the three neurons are
shown in Eq. 1.

Vb1 = Vb1
⋃
{n}/{b2}, Vb2 = Vb2

⋃
{n}/{b1},

Eb1 = Eb1

⋃
{(n, b1)}/{(b1, b2)},

Eb2 = Eb2

⋃
{(n, b2)}/{(b1, b2)},

Vn = {b1, b2}, En = {(n, b1), (n, b2)}

(1)

3) Step 3. Neuron Train (NTRAIN): If a neuron is not
added, then the weights of BMU-1 and its connected neigh-
bours ({wi|i ∈ neighb1}) are modified such that they are
closer to the input in the feature space, and their habituation
counters are updated to decrease response of neurons to further
training. Next, the age of all connections of BMU-1 (Eb1) are
increased by a step, except the one between BMU-1 and BMU-
2 (b1, b2). If the latter is present, age(b1,b2) is reset to zero.
Otherwise, a new connection is created with age set to zero.
Finally, the class probability vector of BMU-1 (pb1) is updated
to increase its association to class label of training input.

As the SONN is adapted only at the local neighbourhood
that is most similar to the input (neighb1), catastrophic
interference to parameters unrelated to the current input is
prevented. This local adaptation is lightweight in terms of
computation and memory requirements, compared to back-
propagation based learning with entire model adaptation. The
dynamically growing nature of the SONN enables the model
to adapt to non-stationary data streams and grow accordingly.
Most importantly, the proposed SONN has inherent parallelism
of vector computations which lends itself well towards custom
hardware implementations.

HBUFF

SCH SCH SCH SCH SCH

V
BRAM

E
BRAM

C
BRAM

Neuromodulator
Controller

Controller

P
BRAM

Activity
Thresholding
(distb1 > distT

&&
Hb1 < hT)

VBUFF PE
Matrix

Neuromodulator

{b1, b2}
{distb1, distb2},
{Hb1, Hb2}

PE

PE

PE

PE

COMP

X

PE

PE

PE

PE

COMP

PE

PE

PE

PE

COMP

PE

PE

PE

PE

COMP

PE

PE

PE

PE

COMP

label
(l)

PC 0 PC 1 PC 2 PC Nc-1PC Nc-2

Associative
Memory

Fig. 2: Overview of proposed architecture

IV. PROPOSED HARDWARE ARCHITECTURE

A. Overview of Architecture

Fig. 2 shows the proposed architecture, which consists of
four main blocks: PE Matrix, Neuromodulator, Associative
Memory and Controller. PE Matrix performs vector compu-
tations of neuron weights: distance calculation of input to
weights of all neurons and winner selection during WSEL,
calculation of new neuron weights during NADD, and updating
weights during NTRAIN. Neuromodulator schedules the opera-
tions on the PE matrix during training (NTRAIN and NADD),
while maintaining neighbourhood graphs of all neurons and
state of connections. Associative memory maintains the prob-
ability scores of each class per each neuron. These three blocks
are controlled and synchronized by the Controller.
B. Hardware Approximations

The following approximations were applied to various op-
erations of the GwR algorithm.

Quantization. Inputs and parameters (originally in floating-
point) were quantized to 8-bit integers [32]. In NTRAIN, the
learning rate was rounded to nearest power-of-2 values to
replace costly multiplications with bit-shift operations.

Distance Computation. The Euclidean distance (di=||x −
wi||) in GwR is replaced with the relatively lighter Manhattan
distance, di=||x− wi||1.

Activity Calculation. In GwR, the activity of BMU-1 (act
= exp (−db1)) is thresholded (act < actT) to decide on the
addition of a new neuron. To avoid the exponential calculation,
this was replaced with distance thresholding (distb1 > distT).

Habituation Counter. Each time a neuron is trained during
NTRAIN, its habituation counter is updated by τ · 1.05 · (1-
H[hi]) - τ , (τ is a constant). To reduce the number of
expensive arithmetic operations at runtime, we precomputed

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

COMP COMP COMP COMP

vbuff

hbuff

activation flow distance flowpartial accum. flow

(a) WSEL step (Pipelined array)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PCsrc PCdest

activation flow weights flow

COMP COMP COMP COMP

(b) NADD step (Semi-broadcast array)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

activation flow

COMP COMP COMP COMP

(c) NTRAIN step (Full-broadcast array)
Fig. 3: PE Matrix dataflow

100 discrete values offline. These values were quantized to 8-
bit and stored in a ROM (H). A pointer (h) is maintained per
neuron to point to its current value in H , which is incremented
each time the neuron is trained (Algorithm 1, line 25).
C. Exploiting Parallelism

Parallelism is exploited for the vector processing operations
involving neuron weights (w) in WSEL, NADD and NTRAIN.
These operations have 2 kinds of parallelism: inter-neuron and
intra-neuron parallelism, which refer to concurrent operations
between neurons and within a neuron respectively. Both par-
allelisms are achieved in the proposed hardware architecture
by unrolling inter-neuron loops (Algorithm 1, lines 2, 21) and
intra-neuron loops (lines 3, 14, 22) by Nc and Nr factors
respectively. The unrolled design is executed in a systolic array
of processing elements (PE Matrix). Each PE is connected
with adjacent PEs supporting pipelined dataflow as shown in
Fig. 3. This allows pipeline execution of both inter-neuron and
intra-neuron loops, which results in further parallelism.
D. Functional Units

1) PE Matrix: PE matrix consists of a set of Processing
Columns (PC), which operates under three different configu-
rations: a) Pipelined array (WSEL), b) Semi-broadcast array
(NADD), and c) full broadcast array (NTRAIN). Each config-
uration supports different dataflow requirements in the three
steps while maximizing parallelism, as shown in Fig. 3. Each
SONN neuron is organized as a Processing Column (PC). A
PC contains an array of processing elements (PE), multipliers
to perform computations, and a memory bank for storing
weights (w) and habituation pointers (h) of its local neurons,
as shown in Fig. 4a. When neurons are progressively added
to SONN, they are assigned a PC in a modulo round-robin
manner. Thus, when the mth neuron is added, m mod N th

c

PC will store its weights (wm) and habituation pointers (hm),
and all its computations as per Algorithm 1 will be performed
locally. Due to round robin assignment, the neurons are evenly
distributed across the PCs, with each PC supporting up to
dNmax/Nce neurons. The inter-neuron loops are unrolled and
executed in parallel by the PCs, while intra-neuron loops are
unrolled and executed in parallel within each PC.

During WSEL, each PC computes distance between input
(x) and neuron weights (w) that are local to the column. Each
PE computes distance between an input and a weight vector
element followed by an accumulation of distance from its

upstream neighbor. This operation of the jth PE of ith PC
is described in line 4 of Algorithm 1.

As shown in Fig. 3a, in each PC, the partial accumu-
lated distance values are sent downstream (blue arrows). To
synchronize with upstream partial accumulated inputs, vbuff
delays input to each PE row in the PC. The final accumulated
distance is sent to a local comparator unit (Comp), where it
gets compared with the two current BMU-1 and BMU-2 dis-
tances (distb1 , distb2) received from downstream comparators.
BMU-1 and BMU-2 are updated according to Algorithm 1,
lines 6-10. The updated BMU-1 and BMU-2 are forwarded
to the next comparator (orange arrows). To synchronize with
comparator dataflow, input to each PC is delayed by hbuff.

During NADD, the PC containing BMU-1 (PCsrc = b1
mod Nc) computes the weights of new neuron added (n) as
described by Algorithm 1, lines 14-16. The computed weights
(wn) are transferred from the PCsrc to PCdest, by shifting
them horizontally across the PE matrix from one column to
another. This is shown in Fig. 3b, where red arrows represent
the movement of weights. The weights are eventually stored
in PCdest, which is determined by the neuromodulator.

In NTRAIN, neurons in the set neighb1 are modified ac-
cording to Algorithm 1, Step 3, by the corresponding PCs
belonging to the set PCtrain={x mod Nc|∀x ∈ neighb1}
in parallel, while other PCs are idle. If a PC have multiple
neurons to be trained, updates are queued and performed
sequentially by that PC. Each PE in a PC performs weights
update of a single weight vector element independently of
other PEs. The behaviour of jth PE when PC updates the
ith neuron weights is shown in Algorithm 1, line 23. The
PE computes difference between x and w vector elements
(xj–wi,j), and a multiplier bank local to each PC performs
ε ·H[hi] · (xj–wi,j), and the result is added to wi,j inside PE.

Fig. 4c shows the internal structure of a PE, where the dif-
ferent computations required for the three steps are performed
using shared arithmetic resources. The operation of the PE is
controlled by the controller and neuromodulator, depending
on the operational steps and the role of the corresponding
PC. Based on the resource constraints, intra-neuron loops
of Algorithm 1 are folded by a factor of Df/Nr. Weights
and habituation pointers of neurons are stored in BRAM
blocks dedicated to each PC, so that the computations are
not delayed by external memory accesses. Each PC requires
8·Df ·dNmax/Nce and 8·(100+dNmax/Nce) bits for weights

PE

PE

PE

PE

COMP

W
BRAM

h
BRAM

W
BRAM

W
BRAM

PE

PE
H

BRAM

>>Eb
En

I
N
T
E
R
C
O
N

BMU-1/
Neighbor

Neuron
IDX (i)

Weights
addr

Scheduler (SCHi)

XWi-1 Wi

PCi

Op

(a) PC structure

PE

Xj

Sumj-1

Sumj

Wi,j

Xj	-	Wi,j

hj.(Xj-Wi,j)

Op

Wi-1,j

(b) PE block

Xj

Wi,j

~

1

(Xj-Wi,j)

Sumj-1

hj	*	(Xj	-	Wi,j)(Xj	-	Wi,j)

Wi,j

Sumj

Op

< 0

Wi-1,j

(c) PE internal structure
Fig. 4: Processing Column (PC) structure

and habituation storage respectively.
2) Neuromodulator: During NADD and NTRAIN, only a

subset of PCs are active at a time. The neuromodulator sched-
ules computations to these required PC(s) during these two
steps. To control individual PCs, the neuromodulator consists
of a scheduler block with Nc scheduler units (sch), each
connected to a PC as shown in Fig. 2. The neuromodulator
also maintains connectivity graphs (G) for all SONN neurons
in the form of lists of neighbour neurons (V) and connections
(E) of each neuron, in two separate BRAM based memories.

In NADD, PCsrc computes the new neuron weights (wn)
and shift them through PCs to PCdest. The individual sched-
uler units set PCsrc to compute new neuron weights, PCdest

to store the weights, PCs in between these to bypass the
weights, and other PCs to idle. Additionally, the connectivity
graphs of BMU-1 (Vb1) and BMU-2 (Vb2) are updated in the
V and E memories, while a new entry (G(Vn, En)) is created
in each of them for the new neuron, as explained in Eq. 1.

In NTRAIN, neuromodulator schedules PCs in the set
PCtrain to train neighb1 set of neurons. For this, neighbour
neuron list of BMU-1, Vb1 , is read from V memory and the
memory bits containing neighb1(b1

⋃
Vb1) set of neurons is

scanned by all Nc scheduler units in parallel. After which,
each scheduler unit identifies neuron(s) associated with the
connected PC. The set of neurons to be trained in the jth

PC is denoted as Nj={n|n mod Nc=j,∀n∈neighb1}. Conse-
quently, PCj updates Nj neurons iteratively as per Algorithm
1, line 23, while each PC operates independently in parallel.

The design assumes maximum neighbours of any neuron to
be Neighmax, which is empirically determined. Each neuron
and connection is identified by an identifier of log2(Nmax) and
log2(Cmax) bits respectively. Therefore the on-chip BRAM
storage requirement for the two memories, V and E is
8·Nmax·Neighmax·(log2(Nmax) + log2(Cmax)).

3) Associative Memory: This unit (P) maintains the class
probability vectors (p) of all neurons on BRAM, which is
updated during NADD and NTRAIN phases as per Algorithm
1, lines 17, 25. A single probability is represented by 8 bits.
Hence, memory requirement of P , is 8·Nclasses·Nmax bits.

4) Controller: The Controller manages the dataflow of the
PE matrix in the three steps by feeding activations into the

PE Matrix in a synchronous manner, and synchronizing PE
Matrix and neuromodulator operations.
E. Latency and Storage Analysis

As shown in Fig. 5, as neurons are added, the latency
of WSEL increases linearly in a piece-wise manner due to
the Nc inter-neuron parallelism of PE Matrix. The latencies
of NADD and NTRAIN do not increase monotonically with
neurons. NADD latency is a function of PCsrc and PCdest,
due to the pipelined data movement explained earlier. The
latency of NTRAIN is dependant on the maximum neurons
to be trained in a single column (maxsch). The mean and
standard deviation of the latency distributions of NADD and
NTRAIN are summarised in Table II.

The proposed design assumes an upper-bound of neuron
growth and connection formation, with maximum limit of
neurons Nmax, neighbours per neuron Neighmax, and con-
nections Cmax. The bounds are constrained by the availability
of on-chip BRAM, and could be extended by storing neuron
parameters in an off-chip memory. The total storage require-
ment of the design is given by Eq. 2.

ST =8·[Nmax·(Df + 1) + 100·Nc︸ ︷︷ ︸
PE Matrix

+Nclasses·Nmax]︸ ︷︷ ︸
assoc. mem

+

[Nmax·Neighmax·(log2(Nmax) + log2(Cmax)) + 8·Cmax]︸ ︷︷ ︸
Neuromodulator

(2)
V. EXPERIMENTAL RESULTS

We analyze and evaluate our proposed method on Core50, a
popular benchmark dataset developed specifically for continu-
ous object recognition from video sequences [33]. The dataset
consists of 50 object classes belonging to 10 categories, with
classification performed at both levels. We use the train/test
split suggested in [33], but images are sampled at 1fps from
the video stream as consecutive images are similar. The model
was evaluated under New Classes (NC) scenario, where model
was trained sequentially in a class-incremental manner.

The following baselines are used. A vanilla Resnet18 model
was trained with stochastic gradient descent (SGD) in a class-
incremental manner (Naive) and using entire dataset at once
(Cumulative). Original GwR model (GwR) was used to eval-
uate the proposed approximations. Additionally, the proposed
model is compared with two popular lifelong learning methods
for class incremental learning (iCaRL [13] and ExStream [34]).

0 200 400 600 800 1000 1200
Neuron Count

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

La
te

nc
y(

us
)

Fig. 5: WSEL latency, (Freq. = 200Mhz)

5 10 15 20 25 30 35 40 45 50
Encountered Classes(Object)

0
200
400
600
800
1000
1200
1400

N
eu
ro
n
Co
un
t Proposed

GWR

(a) Neuron Growth

5 10 15 20 25 30 35 40 45 50
Encountered Classes(Object)

0
500

1000
1500
2000
2500
3000
3500

Co
nn

ec
ti

on
 C

ou
nt Proposed

GWR

(b) Connection Growth
Fig. 6: Model growth comparison

5 10 15 20 25 30 35 40 45 50
Encountered Classes(Object)

0

20

40

60

80

100
Ac
cu
ra
cy
(O
bj
ec
t)

Proposed
GWR

iCaRL
ExStream

naive
cumulative

(a) Accuracy (Object)

5 10 15 20 25 30 35 40 45 50
Encountered Classes(Object)

0

20

40

60

80

100

Ac
cu
ra
cy
(C
at
eo
gr
y)

Proposed
GWR

iCaRL
ExStream

naive
cumulative

(b) Accuracy (Category)
Fig. 7: Model behaviour

TABLE I: Model performance evaluation
Method Accuracy (%) Train Time

(LL/total) s
Mem. requirement

(Params + Data, MB)Object Category
Naivee 2 10 - -
Cumulativef 89.64 95.86 - -
ExStreamb [34] 67.45 81.68 70.92/139.75 1.906 + 1.563
iCaRLa [13] 36.99 52.33 2359.4/2359.4 136 + 75
GwRc 62.472 82.3 37.37/85.46 1.53 + 0
Proposedd 64.25 83.45 20.17/66.69 0.73 + 0

a replay buffer size = 400, lr=0.005
b replay buffer size = 800, network/train params adopted from [34]
c εb1 = 0.5, εvb1 = 0.07, τb=0.3, τn=0.1 actT =0.55, hT =0.1
d εb1 = 0.5, εvb1 = 0.0625, τ=0.3, distT =205, hT =0.1
e,f batch size=16, epochs:naive=1, cumulative=10, learn. rate=0.001

A. Accuracy evaluation

The approaches are evaluated based on accuracy, training
time and memory requirement. The results are summarised
in Table I. The train times were measured using models
developed on PyTorch framework [35] and executed on GPU,
while memory requirement was calculated from trainable
parameters, and data storage, required for lifelong learning. It
can be observed that Naive undergoes catastrophic forgetting.
Among the lifelong learning models, the proposed SONN
exhibits higher accuracy than iCaRL and ExStream in category
level, while executing faster and consuming lesser memory.
Although, the proposed SONN generates more neurons and
connections than GwR as shown in Fig. 6, the memory
requirement and runtime is lesser, with slight improvement in
accuracy. Hence, the proposed model is clearly more amenable
to edge implementation with tight computation and memory
constraints. Fig. 7 shows the accuracy change of all methods
as classes are encountered.

B. Hardware Comparison

The proposed SONN was implemented with Verilog HDL
and synthesized using Xilinx Vivado 2019.1 for Zynq Ultra-
Scale+ ZCU9EG at 200Mhz. CPU and GPU implementations
of the SONN was developed using PyTorch framework [35],
for benchmarking the proposed hardware.

Table II shows the performance of all devices for the three
steps separately per video sample. The range of WSEL latency
with neuron growth is used for comparison among devices,
which shows that the FPGA design outperforms CPU and GPU
by 229 and 166 times respectively. The NTRAIN time for each
sample depends on the size of the set neighb1 for CPU/GPU

TABLE II: Latency (us) comparison for CPU, GPU and FPGA
Step GPUa CPUb FPGAc

WSEL (min-max) 570 - 691 204 - 950.8 0.63 - 4.145
NTRAIN (mean ± std) 1220 ± 224 734 ± 224 0.484 ± 0.157
NADD (mean ± std) 1600 ± 720 1080 ± 350 0.487 ± 0.144

a Nvidia GTX 1080, 2560 CUDA cores, 1.7GHz, 8GB
b Intel Xeon E5-1650v2, 3.50GHz, 12MB cache, 16GB RAM, 6 OMP threads
c 200Mhz, Nmax=2048, Cmax=8096, Neighmax=29, Nr=27, Nc=32

TABLE III: Hardware results and comparison
[23] [24] [22] Proposed

Design Parameters
Feature Extractor Inception-V3 Inception V3 - Resnet-18
Feat. Vec. dim 2048 2048 100 512
No. of Neurons 200 30 1000 2048
Output Classes 10 10 10 50
Network Params 409610 61450 1000000 1150976
Bit-Precision 16-bit 16-bit 16-bit 8-bit/ 16-bit
Mem. Requirement 1.30E+07 1.11E+07 1.60E+07 1.22E+07
Synthesis Results
Device xc7vx690tffg xcvu13P xc7vx690T xzcu9eg
LUT 265680 152546 232,111 115656
FF - - ∼5000 104680
DSP 2048 2064 3000 1184
BRAM (36kb) - - - 415.5
Max Frequency (Mhz) 209 204 93 200

implementations, and the distribution of neighb1 across PCs
for FPGA. To be fair, we compare the mean distribution
of latencies for NTRAIN samples. Results show that FPGA
outperform CPU and GPU by 779 and 1000 respectively. The
comparison of NADD latencies show FPGA with gains of
2389 and 3539 times over CPU and GPU respectively. The
FPGA design significantly outperforms the CPU and GPU
implementations due to 1) application specific parallelism and
pipelining described in Section IV, and 2) distributed on-chip
BRAM memory offering high bandwidth. During NADD and
NTRAIN, CPU outperforms the GPU. A significantly higher
degree of parallelism is required for the GPU to gain a runtime
advantage over the faster CPU clock operating frequency and
the synchronization overhead with the host CPU.

Table III compares the hardware resource consumption of
the proposed design with existing FPGA based lifelong learn-
ing models with local learning rules. Similar to the proposed
work, the existing implementations exclude feature extractors.
The number of neurons in the hidden layer is presented along
with memory requirement for each work. It can be observed
that the proposed work consumes the least resources. A major
drawback common to all these existing methods is that they
assume that the number of neurons and neurons per class are
known a-priori. As such, unlike all the existing hardware based
lifelong learning models, our proposed SONN is capable of
growing dynamically to adapt to non-stationary data streams.

VI. CONCLUSION

Lifelong learning on the edge is essential for autonomous
agents operating in dynamic environments that need constant
model adaptation. We proposed a FPGA based SONN that
dynamically evolves to adapt to non-stationary data streams. In
order to maintain scalability and reduce runtime, an efficient
scheduling method is employed to maximize resource reuse
and parallelism. We show that the proposed hardware approx-
imation strategies not only resulted in shorter training time
and lesser memory storage, but also improves accuracy. The
proposed FPGA architecture also significantly outperforms the
CPU and GPU implementations due to the effective use of
application-specific parallelism and on-chip BRAM.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Research
Foundation Singapore under its Campus for Research Ex-
cellence and Technological Enterprise (CREATE) Programme
with the Technical University of Munich at TUMCREATE.

REFERENCES

[1] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik,
J. Terwilliger, A. Patsekin, J. Kindelsberger, L. Ding, S. Seaman,
A. Mehler, A. Sipperley, A. Pettinato, B. D. Seppelt, L. Angell,
B. Mehler, and B. Reimer, “Mit advanced vehicle technology study:
Large-scale naturalistic driving study of driver behavior and interaction
with automation,” IEEE Access, vol. 7, pp. 102 021–102 038, 2019.

[2] G. Angeletti, B. Caputo, and T. Tommasi, “Adaptive deep learning
through visual domain localization,” in 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), 2018, pp. 7135–7142.

[3] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,” Neural
Networks, vol. 113, pp. 54 – 71, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608019300231

[4] M. McCloskey and N. J. Cohen, “Catastrophic interference in
connectionist networks: The sequential learning problem,” ser.
Psychology of Learning and Motivation, G. H. Bower, Ed.
Academic Press, 1989, vol. 24, pp. 109 – 165. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0079742108605368

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, and et al., “In-datacenter
performance analysis of a tensor processing unit,” SIGARCH Comput.
Archit. News, vol. 45, no. 2, p. 1–12, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

[6] S. Marsland, J. Shapiro, and U. Nehmzow, “A self-
organising network that grows when required,” Neural Networks,
vol. 15, no. 8, pp. 1041 – 1058, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608002000783

[7] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and
N. D. Rodrı́guez, “Continual learning for robotics,” ArXiv, vol.
abs/1907.00182, 2019.

[8] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, Dec 2018.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017. [Online].
Available: https://www.pnas.org/content/114/13/3521

[10] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in ICML, 2017.

[11] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” arXiv preprint arXiv:1708.01547,
2017.

[12] G. I. Parisi, J. Tani, C. Weber, and S. Wermter, “Lifelong learning
of spatiotemporal representations with dual-memory recurrent self-
organization,” Frontiers in neurorobotics, vol. 12, p. 78, 2018.

[13] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[14] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 6467–6476.

[15] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[16] B. Fritzke, “A growing neural gas network learns topologies,” in Ad-
vances in neural information processing systems, 1995, pp. 625–632.

[17] A. Gepperth and C. Karaoguz, “A bio-inspired incremental learning
architecture for applied perceptual problems,” Cognitive Computation,
vol. 8, no. 5, pp. 924–934, 2016.

[18] J. L. Part and O. Lemon, “Incremental online learning of objects for
robots operating in real environments,” in 2017 Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), Sep. 2017, pp. 304–310.

[19] ——, “Towards a robot architecture for situated lifelong object learning,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Nov 2019, pp. 1854–1860.

[20] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
“F-cnn: An fpga-based framework for training convolutional neural
networks,” in 2016 IEEE 27th International Conference on Application-

specific Systems, Architectures and Processors (ASAP). IEEE, 2016,
pp. 107–114.

[21] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and
M. Herbordt, “Fpdeep: Acceleration and load balancing of cnn training
on fpga clusters,” in 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE,
2018, pp. 81–84.

[22] A. R. Daram, D. Kudithipudi, and A. Yanguas-Gil, “Task-based neu-
romodulation architecture for lifelong learning,” in 20th International
Symposium on Quality Electronic Design (ISQED). IEEE, 2019, pp.
191–197.

[23] G. B. Hacene, V. Gripon, N. Farrugia, M. Arzel, and M. Jezequel,
“Budget restricted incremental learning with pre-trained convolutional
neural networks and binary associative memories,” Journal of Signal
Processing Systems, vol. 91, no. 9, pp. 1063–1073, 2019.

[24] ——, “Efficient hardware implementation of incremental learning and
inference on chip,” 2019.

[25] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[26] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: An astounding baseline for recognition,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
June 2014, pp. 512–519.

[27] A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of
deep learning networks for learning and classification: A review,” IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[28] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2015, pp. 161–170.

[29] D. Piyasena, R. Wickramasinghe, D. Paul, S. Lam, and M. Wu, “Reduc-
ing dynamic power in streaming cnn hardware accelerators by exploiting
computational redundancies,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL), 2019, pp. 354–359.

[30] ——, “Lowering dynamic power of a stream-based cnn hardware
accelerator,” in 2019 IEEE 21st International Workshop on Multimedia
Signal Processing (MMSP), 2019, pp. 1–6.

[31] D. O. Hebb, The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[32] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[33] V. Lomonaco and D. Maltoni, “Core50: a new dataset and benchmark for
continuous object recognition,” arXiv preprint arXiv:1705.03550, 2017.

[34] T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience
replay for streaming learning,” in 2019 International Conference on
Robotics and Automation (ICRA), May 2019, pp. 9769–9776.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

