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Abstract

In this paper, we address the problem of travel time prediction of bus jour-

neys which consist of bus riding times (may involve multiple bus services) and

also the waiting times at transfer points. We propose a novel method called

Traffic Pattern centric Segment Coalescing Framework (TP-SCF) that relies on

learned disparate patterns of traffic conditions across different bus line segments

for bus journey travel time prediction. Specifically, the proposed method con-

sists of a training and a prediction stage. In the training stage, the bus lines

are partitioned into bus line segments and the common travel time patterns of

segments from different bus lines are explored using Non-negative Matrix Fac-

torization (NMF). Bus line segments with similar patterns are classified into the

same cluster. The clusters are then coalesced in order to extract data records

for model training and bus journey time prediction. A separate Long Short

Term Memory (LSTM) based model is trained for each cluster to predict the

bus travel time under various traffic conditions. During prediction, a given bus

journey is partitioned into the riding time components and waiting time com-

ponents. The riding time components are predicted using the corresponding

LSTM models of the clusters while the waiting time components are estimated

based on historical bus arrival time records. We evaluated our method on large

scale real-world bus travel data involving 30 bus services, and the results show
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that the proposed method notably outperforms the state-of-the-art approaches

for all the scenarios considered.

Keywords: Journey time prediction, bus journey, riding time, waiting time,

traffic pattern.

1. Introduction

Efficient and easy-to-use public transportation system is an important el-

ement in sustainable cities as it can boost the reduction in traffic congestion

and lower carbon emissions from vehicles [2]. A key enabler to the success of

public transportation system lies in the provision of accurate travel time infor-5

mation for travelers to make reliable journey planning. This is especially vital

for bus services which typically account for the majority ridership among all

public transport journeys [13]. Travel time prediction is also elementary to dy-

namic route guidance systems that provide intermodal transport options and

recommended routes to travellers based on real-time data.10

Accurately predicting travel time is challenging as it is not only affected by

environmental and periodical factors such as weather conditions (e.g., a strong

storm), time of day (e.g., rush hours) and holidays, but also by many complex

dynamics such as the dynamic traffic conditions, uncertainty of the driving

behavior, the fluctuations in travel demand and supply, stochastic arrivals and15

departures at signalized intersections, etc. Moreover, the traffic conditions of the

road segments usually follow periodic patterns (e.g. daily, weekly periodicity)

which change over time and vary geographically [24]. These characteristics make

travel time in urban area intrinsically uncertain and difficult to predict.

Existing methods typically estimate the total journey time of a path by20

decomposing it into a sequence of individual road segments or path segments

(each segment consists of a collection of individual segments). The individual-

based approaches estimate the travel time of each road segment individually and

aggregate the travel time for each road segment to compute the total travel time

[6], while the collective-based methods treat a sequence of road segments (or the25
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entire path) as the basic prediction elements [26]. In general, the collective-

based approaches perform better than individual-based ones, as they can better

characterize the complex traffic conditions within the entire path and eliminate

some errors accumulated by those individual-based approaches [6, 10, 34].

The factors that affect individual passengers’ journey time using bus services30

(JT-BS) are significantly different from those affecting the travel time of general

vehicles. Specifically, JT-BS is affected not only by the traffic conditions (e.g.

traffic flow, traffic speed) but also by other factors such as the dwell time at

each bus stop, bus service frequency, etc. Also, the waiting time at interchange

station during transfer needs to be considered, as this is a non-negligible part of35

a passengers’ total journey time. The waiting time may fluctuate drastically due

to dynamic traffic demand and supply. These unique features make travel time

prediction of bus journeys significantly different from travel time prediction of

general vehicles in the existing works. As such, there is a need to develop efficient

methods for travel time prediction which can cater to the unique characteristics40

of bus services.

The existing works on bus travel time prediction [1, 5, 14, 19] typically

employ a single prediction model for the entire bus line (or bus service route).

This could lead to unreliable prediction results as a bus usually travels through

road segments that have large variances in traffic conditions (e.g. congestions,45

travel demands, traffic signals). On the other hand, segments from different

bus lines could exhibit similar travel time patterns if they are subjected to

similar traffic conditions. As such, a prediction model that is constructed based

on bus line segments with similar traffic patterns (even though they are not

spatially connected) could lead to more accurate prediction. There are many50

other advantages for identifying and employing traffic patterns for bus journey

time prediction: 1) It only needs to train a few prediction models (one for each

cluster of a specific travel time pattern) for all the bus lines, and thus is of lower

cost to retrain the prediction models to adapt to the evolving traffic conditions.

2) Some bus lines that lack sufficient training data can benefit from other bus55

lines that share the same traffic patterns.
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The main contributions of this work are summarized as follows:

1. We propose a novel bus travel time prediction method that fully considers

the heterogeneity in travel time patterns of bus line segments within the

same bus line, while simultaneously exploring the commonalities of traffic60

patterns across bus line segments in different bus lines. We first identify

the common travel time patterns (in changing trends) shared by different

bus line segments via a Non-negative Matrix Factorization (NMF) based

method. In the NMF, we employ l2,1-norm minimization on regularization

to generate sparse solutions so that each bus line segment shares similar65

travel time trend with only a few of the identified patterns. The pro-

jected gradient descent algorithm is applied to solve the NMF problem

[15]. Then, we classify all the segments in bus lines into clusters such that

each cluster is associated with a specific travel time pattern.

2. We train a separate Long Short Term Memory (LSTM) based prediction70

model for each cluster that captures the travel time pattern associated

with that cluster. The clusters are coalesced to extract journey records of

various distance for training the LSTM network. Features that can char-

acterize roadway characteristics (e.g. distance), traffic conditions, bus

dwelling time at bus stops, delays at intersections and bus speeds are75

extracted from historical bus trajectories, bus line information, road net-

work, and weather data. These features are fed into the LSTM network

for training. Our work is the first to demonstrate that bus travel time

prediction models do not need to be confined to the spatial connectivity

of the bus lines and exploiting common traffic patterns across different80

bus line segments can lead to better prediction accuracy.

3. Unlike existing works, we focus on predicting the bus journey travel time

for passengers that involve not only the riding times of multiple bus ser-

vices but also the waiting times at transfer points. During prediction, the

total journey time is calculated by aggregating the riding time compo-85

nents and the waiting time components. The riding time components are
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estimated using the LSTM models and the waiting time components are

calculated using historical average method relying on a large volume of

historical bus arrival time records.

4. We conduct extensive experiments to evaluate our proposed approach us-90

ing large scale real bus travel data involving 30 bus services, bus route in-

formation, road networks of Singapore, and weather condition data. The

experimental results show that the proposed method significantly and con-

sistently outperforms the baseline approaches.

Section 2 discusses related works and highlight the differences between our95

work and the existing ones. Section 3 introduces important definitions and the

problem description, and Section 4 presents the proposed method for travel time

prediction of bus journeys. The benefits of the proposed approach are evaluated

in Section 5, and Section 6 concludes the paper.

2. Related Works100

Bus Travel Time Prediction. In general, efforts to predict bus travel

times can be categorized into the following categories: 1) historical average (HA)

approach [14] predicts the travel time of a journey by relying on the historical

average travel time for the same daily period over different days. It builds a

non-parametric model that does not make any assumptions on the underlying105

data, and does not use any explicit training data. However, it is typically dif-

ficult to collect sufficient journey records for each origin-destination pair. 2)

Kalman Filters (KF) approaches use a series of travel time records observed

over time to produces estimates of unknown travel times, by estimating a joint

probability distribution over the travel time records for each time frame [25].110

Typically, a KF model cannot be generalized to the prediction of different time

series [5]. 3) Time Series Analysis uses models to predict future values based

on previously observed values by taking into account possible internal structure

in the data [19]. However, this method is sensitive to complex scenarios with

anomalies, which are common in bus journeys due to uncertainties caused by115
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bunching, delays at intersections, etc. 4) ML based models such as LR, SVM,

and NN have been proposed for travel time prediction. LR models capture the

linear relationship between travel times and the related factors [20]. This model

is computationally efficient but usually, produce undesirable results for nonlin-

ear systems. SVR methods have been used for predicting travel-time of cars120

on highways [29] and buses in city road network [33], due to its greater gen-

eralization capacity and can guarantee global minima for given training data.

However, this model suffers from high computation overhead. Many NN ap-

proaches have been developed to predict bus travel time using both historical

and real-time data [1, 4]. It is shown that NN based models have demonstrated125

an advantage over the KF model, HA model, ARIMA and classical regression

models, because they have a better ability to model the traffic dynamics in road

networks.

Journey Travel Time Prediction Many works have been reported to es-

timate the travel time of vehicles (taxis or private cars) between an origin-130

destination pair [29, 21, 27, 26]. However, these approaches are not suitable for

bus journey time prediction because, the travel time of bus journey is affected

not only by the traffic conditions (e.g. traffic flow, traffic signal) but also by

other factors such as the dwell time at each bus stop, bus service frequency,

etc. Also, the waiting time at interchange station during transfering need to be135

considered, which is a non-negligible part of a passengers’ total journey time.

The work in [6] predicted the travel time of bus journeys by partitioning a bus

line into segments based on bus stops. The travel times over all segment are es-

timated separately and summed up to obtain the total journey time. However,

it is shown that simply summing up the travel time of each route segments does140

not result in high prediction accuracy [10]. Moreover, the transfer time at inter-

change stations along the journey has not been taken into consideration. The

work in [9] proposed to partition a bus journey into riding and waiting compo-

nents based on transfer points. Since a separate prediction model is trained for

each bus route, several hundreds of prediction models are needed for an entire145

city. It also neglects the heterogeneity in traffic patterns of bus line segments
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within the same bus line and the commonalities of traffic patterns across route

segments in different bus lines, which are important for accurate travel time

prediction.

Traffic Situation-aware Prediction Situation-aware prediction methods have150

been used in traffic speed prediction of road segments [30, 3], where different

roads have different speed patterns. These works proposed methods to predict

the traffic speed of the same road segments using different prediction models

while different road segments can share the same models if they are subjected

to the same traffic condition. In our paper, we investigated the problem of bus155

journey time prediction, which is a more complicated scenario as a journey route

cannot be simply treated as a single entity. This is because segments of the same

bus line may behave significantly different in travel time due to heterogeneous

traffic conditions while segments of different bus lines could also exhibit simi-

lar patterns. We propose a novel framework that explores the commonalities of160

travel time patterns among the segments and coalesces the journey route at unit

segment level based on traffic pattern similarity of bus line segments, with the

aim of improving prediction accuracy. For each traffic pattern (corresponding

to a cluster), we rely on an attention-aware LSTM network to build a single

prediction model, instead of using multiple prediction models as in [3].165

Table 1 presents a detailed qualitative comparison of existing works with ours

for travel time prediction of a journey route (the works in [17, 19, 20, 21, 29],

which are restricted to travel time/speed prediction of only single road segments

are not included in the table). We classified the existing works into three cate-

gories based on the vehicle type: 1) general vehicle: estimates the vehicle travel170

time for an input journey path or OD pair; 2) bus: predicts the travel (or ar-

rival) time of a bus service which has fixed travel route; 3) passenger : estimates

the individual passengers’ total travel time using public transport (e.g. bus ser-

vices) that may include both the riding time on buses and the waiting time for

the bus services. In general, the existing works vary significantly in the type of175

transport network (road network, bus network, and grid network), estimation

strategy (individual-based or collective-based), datasets (e.g. taxi trajectories,
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Table 1: Detailed comparison of existing methods for predicting travel time of a journey path.

Problem category general vehicle bus travel time individual passenger

Existing works [26] [33] [28] [10] [12] [1] [5] [14] [33] [9] our

road network
√ √ √

bus network
√ √ √ √ √ √

grid network
√ √

consider waiting time
√ √

individual-based
√

collective-based
√ √ √ √ √ √ √ √ √ √

taxi trajectory
√ √ √

bus trajectory
√ √ √ √ √

trip data
√ √ √

Neighbor-based
√ √ √

KF
√

SVR
√

LR
√ √

(deep) neural network
√ √ √ √ √ √ √

bus trajectories, trip data, etc.), and prediction models (e.g. neighbor-based

method, KF, SVR, LR, NN, etc.).

For the datasets, a trajectory consists of a sequence of points, where each180

point typically contains GPS location and the corresponding timestamp. Some

works also include extra features for each trajectory point, such as the bus

speed, number of boarding passengers, bus dwell time etc., to achieve more ac-

curate prediction. On the other hand, a trip record typically consists of the trip

information including origin, destination, journey start time, total travel time,185

etc., and no trajectory points are stored. With regards to the prediction model,

the traditional methods (such as KF, LR, SVR, ARIMA, etc.) typically take

into account the environmental factors such as weather condition (e.g., heavy

storm), network characteristics (e.g., road type, distance, connectivity), time of

day (e.g., rush hours) and holidays. However, these methods face difficulty in190

modelling the complex nonlinear spatiotemporal correlations. The deep learn-

ing models provide a promising way to capture spatiotemporal correlations for
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traffic prediction. For example, the traffic conditions have inherent temporal

patterns (e.g. daily and weekly periodicity), which can be learned using re-

current neural network (e.g. LSTM), while the convolutional neural networks195

(CNN) can capture the spatial dependency among neighboring journey route

segments. This motivates the approach taken in our work where we also rely

on the LSTM network to capture the temporal correlations for bus riding time

prediction.

3. Definitions and Problem Description200

Definition 1 (Bus Line): A bus line is a fixed route that is regularly

traveled by the bus, and it can be represented by a sequence of points BLl =<

pl1, pl2, . . ., plnl
> where pli = (xi, yi), for i = 1 . . . nl, is the GPS location of

the i-th bus stop along the bus line BLl, and nl is the number of bus stops

in BLl. We use bus stops as points to represent a bus line/route as predicting205

the arrival time at a bus stop is usually desired. Bus passengers tend to be

only interested in the arrival time at a bus stop rather than a random point

along the route. In this paper, the notation bus line, bus route, and bus service

are used interchangeably. A bus line segment is a set of connected points, e.g.

Rl
i,j =< pli, p

l
i+1, . . . , p

l
j > (i < j) indicating the segment from stop pli to stop210

plj of the bus line BLl. Particularly, the bus line segment RL
i,j is called a unit

segment if pLi and pLj are consecutive bus stops of the bus line BLl.

Definition 2 (Bus Trajectory): A bus trajectory T is a sequence of

consecutive GPS points that record a bus’ travel information, i.e. BT =

{p1, p2, ..., p|BT |}. Each point pi contains the latitude information, longitude215

information, and timestamp information. A bus trajectory records the arrival

time of the bus at each of the bus stops along the bus line. Based on the bus

trajectory, the actual bus travel time between any segment of the trajectory can

be derived.

Definition 3 (Bus Journey): A bus journey signifies a complete travel220

from the passenger’s origin to the destination, which may involve multiple
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journey-segments using different bus lines/services. Passengers typically need to

wait for bus service at the origin stop as well as the intermediate bus stops/interchange

station. Without loss of generality, the bus stop/interchange station where a

passenger waits for the first bus service is also regarded as a transfer point.225
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Figure 1: Proposed framework: Model training stage.

4. Proposed Method

4.1. Framework

The proposed framework, Traffic Pattern centric Segment Coalescing Frame-

work (TP-SCF), for bus journey time prediction consists of three major stages.

1. The first stage aims to explore common travel time patterns across differ-230

ent bus line segments. This is based on the premise that segments from

different bus lines may exhibit similar travel time patterns if they are sub-

jected to similar traffic conditions. We first identify the hidden travel time

patterns that are shared by bus line segments. We then cluster the bus

line segments with similar travel time pattern, as shown in Fig. 1 (a) and235

(b).

2. Each of the obtained clusters is associated with a specific traffic pattern

that is shared among segments from the same or different bus lines. We
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train a separate LSTM-based prediction model for each cluster that cap-

tures the travel time pattern associated with that cluster, as shown in Fig.240

1 (c). The models are trained using features that can characterize traffic

conditions, bus dwell times at bus stops, delays at intersections as well as

roadway characteristics.

3. The third stage performs bus journey time prediction, as shown in Fig.

2. We partition a given journey into riding time components and waiting245

time components. The riding times are predicted using the LSTM models

obtained in the second stage, while the waiting times are calculated using

the historical average (HA) method. Finally, the riding times and waiting

times are aggregated to calculate the total journey time.

4.2. Traffic Pattern Clustering250

The aim of this stage is to identify travel time patterns that are shared

among bus line segments, and cluster bus line segments with similar patterns.

4.2.1. Data Representation of Bus Line Segment

For each unit segment Rl
i,i+1 of a bus line BLl, we use a travel time vector

Xi,l ∈ RM to characterize the traffic situation (travel time pattern) associated255

with the segment. Xi,l contains M values corresponding to the historical travel

times of M time intervals through a day, which can reflect the difference in

traffic condition across different time intervals. Each value is the average of

all historical travel times of the same interval over all days. In this paper,

M = 36 as the time span of observation is from 6:00 am to 24:00 pm with a260

time interval of 30 minutes. The vector Xi,l represents a changing trend of travel

time (pattern) associated with the bus line segment Rl
i,i+1 (segment pattern for

short). We combine the vectors of each unit segment Rl
i,i+1 into a matrix X,

where X ∈ RN×M , N =
∑|BL|

l=1 nl − 1, nl − 1 is the number of unit segments in

bus line BLl, BL is the set of involved bus lines.265
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4.2.2. Traffic Pattern Identification

We rely on Non-negative Matrix Factorization (NMF) technique to identify

the hidden patterns (i.e. changing trends) of travel times associated with the

bus line segments. The NMF method has been used to describe the typical

temporal patterns of the global traffic states (or human mobility flows) and270

achieves long-term prediction of the large-scale traffic evolution [7, 23, 18]. In

this paper, we aim to identify K hidden patterns so that all segments can be

grouped into K clusters and each cluster is associated with a specific pattern,

where K is a hyperparameter.

With the matrix X ∈ RN×M and the cluster number K (K < M), we

use NMF to find two non-negative matrices V ∈ RN×K
+ and H ∈ RK×M

+ to

approximate the original matrix X. The NMF is formulated as

arg min
V, H

‖ X−VH ‖2F +ρ1 ‖ V ‖2,1 (1)

where the l2,1 norm is given by ‖ V ‖2,1=
∑N

i=1

√∑K
j V 2

i,j . Existing research275

has shown that minimizing l2,1-norm usually generates sparse solutions [32,

16]. Each row of H represents a specific traffic pattern associated with the

corresponding cluster (cluster pattern for short). The cluster pattern is the

common knowledge regarding the travel time sequences of all segments in the

cluster (each sequence contains M values corresponding to M time intervals),280

which is obtained by solving the NMF problem. The obtained matrix V has

very few components with relatively large values in each row, meaning that

the travel time pattern of a bus line segment (each row of X) is similar to the

patterns of only a few clusters. The projected gradient descent algorithm is

applied to solve the NMF problem [15].285

4.2.3. Cluster Label Assignment

After matrix factorization, each row Xi of matrix X can be represented as

an additive combination of the rows in matrix H (or each segment pattern can

be represented as a combination of the cluster patterns). The row Vi of matrix

V contains the weights of the linear combination of each cluster pattern to form290
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Xi. The Cluster Label Assignment problem considered in this section assigns a

cluster label for each row Xi of matrix X, based on the matrix V.

The NMF approach has been used in [31, 3] to cluster document data and

sensor data. In those works, after the matrix V is obtained, the cluster label

for row Xi is assigned to cluster j maximizing Vi,j . In this work, for a data295

record Xi, we do not simply assign cluster c = arg maxj Vi,j to it. We impose a

restriction that all segments of the same bus line are associated with at most k

clusters (corresponding to at most k traffic patterns). By limiting the parameter

k to a small value, fewer LSTM models are required to predict the total journey

time.300

We formulate the cluster label assignment as an optimization problem as

follows. The binary matrix Z ∈ {0, 1}nl−1,K is used to represent the assignment

of cluster labels to the rows of X (affiliated with bus line BLl), where Zi,c = 1

if cluster label c is assigned to row Xi, and 0 otherwise (nl is the number of

bus stops in BLl and K is the number of clusters). The vector Q ∈ {0, 1}K is

used to indicate which cluster labels are assigned to segments of bus line BLl,

where Qc = 1 if cluster label c is assigned to at least one segment of BLl, and

0 otherwise. The problem is formulated as

max
1≤i<nl,1≤j≤K,Zi,c≤Qc,‖Q‖1≤k

Zi,jVi,j (2)

where ‖ Q ‖1≤ k ensures that at most k clusters can be selected for the bus

line while Zi,c ≤ Qc ensures that a cluster label can be used only if it is selected

for the bus line. The problem can be efficiently solved since the problem size is

small (K < 20, nl < 100 for each bus line).

4.3. Prediction Model for Each Cluster305

In this section, we describe the training prediction model of each cluster,

which captures the travel time patterns associated with various traffic condi-

tions. We first discuss how to build the training dataset and introduce the

features that are used to train the LSTM network. Next, we present our LSTM

network for travel time prediction. The discussions in the following sub-sections310
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will be restricted to a single cluster (i.e. C1), and other clusters can be processed

in the same way.

4.3.1. Training Dataset

We can easily reconstruct a pseudo bus line by coalescing (concatenating)

multiple segments from the same bus line as shown in Fig. 1 (b). Since a315

practical journey usually contains 1, 2 or 3 bus lines, we further concatenate

every three pseudo lines to form one relatively longer pseudo bus lines. We

treat the segments of each pseudo bus line as connected even though they are

physically not. The journey records of the pseudo bus line are then extracted

as follows.320

For each pseudo bus line BL, we extract training data as a matrix x ∈ RF×D,

where F is the number of journey records and D is the dimension (number) of

features. Each row of matrix x is a feature vector associated with a journey

made at a certain time interval. The matrix of journey records is obtained

in the following way. For a given route (a segment of a pseudo bus line), we325

obtain a journey record xt at each 30-minutes time interval for a period of 63

days, resulting in a sequence of 63×36 journey records, where 36 is the number

of time intervals in each day (from 06:00 am to 12:00 pm). The pseudo bus

line BL with nBL unit segments has nBL·(nBL−1)
2 different route segments in

total, hence the total number of journey records collected for pseudo bus line330

BL is 63 × 36 · nBL·(nBL−1)
2 . As a result, the matrix x has F =

∑
BL∈C1 63 ×

36 · nBL·(nBL−1)
2 rows, where C1 is the cluster obtained via NMF and BL is a

pseudo bus line. The ground truth vector of the journey travel time is denoted

as ŷ ∈ RF . In addition, we use y ∈ RF to denote the target vector. One

sub-matrix is extracted for each pseudo bus line, and the matrices of all pseudo335

bus lines are combined together to train a prediction model for the cluster C1.

Each row of the matrix x is a feature vector containing the following features

that impact the journey travel time:

• Time of day, i.e. journey start time. This can be used as an indicator to

characterize the variance of traffic conditions over a day.340
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• Day of week, i.e. day that journey will be made. This can be used to

differentiate the traffic conditions between working days and weekends.

• Travel distance, i.e. total distance of the journey route.

• Number of bus stops, i.e. number of stops between the origin stop and the

end stop along the journey route. This reflects the expected number of345

bus stopping and the bus dwelling time.

• Number of intersections, i.e. number of intersections along the journey

route, including pedestrian crossings. Note that buses typically slow down

at intersections.

• Number of traffic signals, i.e. number of traffic signals along the journey350

route. Buses often need to stop at the intersections with signals.

• Weather condition. This affects the bus moving speed and travel demands.

There are 14 categories of weather conditions, including heavy thunder-

storms, rain showers, light rain, sunny, etc. We arranged all the categories

in the order of good conditions (e.g. sunny) to bad conditions (e.g. strong355

thunderstorms), as this will represent the conditions that will progressively

impact the journey time. The ordered weather conditions are denoted as

numbers from 1 to 14.

4.3.2. LSTM based Network Structure

The input matrix is fed into two stacked LSTM layers, where each LSTM

layer has 128 neurons. The LSTM memory cell can be described with the
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following equations:

it = σ(Wixxt + Wihht−1 + bi)

ft = σ(Wfxxt + Wfhht−1 + bf )

ot = σ(Woxxt + Wohht−1 + bo)

C̃t = tanh(WCxxt + WChht−1 + bC)

Ct = it ∗ C̃t + ft ∗Ct−1

ht = ot ∗ tanh(Ct)

(3)

where t indicates the t-th timestamp, it, ft, ot refer to the output of the input360

gate, forget gate and output gate respectively. xt, ct, ht are the input vector,

state vector and hidden vector respectively, and ht−1 is the former output of

ht. C̃t and Ct are the input state and output state of the memory cell, and

Ct−1 is the former state of Ct. σ is a sigmoid function. Wix,Wfx,Wox,WCx

are the weight matrices connecting xt to the three gates and the cell input,365

Wih,Wfh,Woh,WCh are the weight matrices connecting xt−1 to the three

gates and the cell input, bi, bf , bo, bC are the bias terms of the three gates

and the cell gates. All the above-mentioned parameters are initialized randomly

and learned automatically through backpropagation during the learning stage.

The output of the LSTM layers goes into several fully-connected layers,370

where each layer is of size 128. The fully-connected layers are connected with

residual connections, which is shown to be effective for training a very deep

neural network [8]. The residual connection adds shortcuts between different

layers, thus previous information flow can skip one or more non-linear layers

through the shortcut and the skipped layers just need to learn the ‘residual’375

of the non-linear mapping. For the first fully connected layer, its input is the

output of the last LSTM layer. Let σfi be the i-th residual fully-connected

layer, then the output of the first layer is σfi(oz), where oz is the output of

the LSTM layer. For the rest of the residual layers, let ofi be the output of

the i-th layer, then the output of the (i + 1)-th layer can be represented as380

ofi+1
=ofi⊕σfi+1

(ofi), where ⊕ is an element-wise add operation.

Finally, we apply a tanh activation function and obtain the prediction results.
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In order to prevent overfitting, two widely used regularization techniques are

employed: dropout and L2 regularization. The dropout mechanism is applied

to each hidden layer, where the rate of dropout is set to 0.5 [22]. Moreover,

we apply L2 regularization on model weights to prevent possible overfitting.

Formally, the loss function used for training the model is:

Lloss =

F∑
i=1

(ŷi − yi)2 + λ ‖W ‖2 (4)

where λ is a hyper-parameter to control the regularization strength and W

denotes all weights in the network. The Adam optimizer is utilized as the

gradient descent optimization algorithm. The training process repeats for 50

epochs.385

4.4. Bus Journey Time Prediction

During the prediction stage, the entire journey time is partitioned into rid-

ing time components (moving along the bus line segments) and waiting time

components (at origin stop or transfer points). Then the total journey time is

calculated as the sum of all riding time components and waiting time compo-

nents,

T =
∑

p∈TP

Waiting(p) +
∑

bl∈BL′

Riding(bl) (5)

where TP is the set of transfer points (including the origin stop), Waiting(p) is

the waiting time at bus stop p, BL′ is the set of coalesced journey routes, and

Riding(bl) is the required riding time for travel over bus line segment bl.

4.4.1. Bus Riding Time Prediction390

The journey route is reconstructed by coalescing the corresponding line seg-

ment clusters as shown in Fig. 2, based on the cluster labels of bus line segments

obtained via the NMF method as discussed in Section 4.2. The travel time of

the bus line segments is predicted using the prediction model trained for the

corresponding cluster. As shown in Fig. 2, the input journey route is parti-395

tioned into three route segments, bl1, bl2, bl3, and two waiting time components
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Figure 2: Proposed framework: Prediction stage.

(i.e. waiting at the origin stop and the transfer point). The riding times of three

route segments, Riding(bli) (1 ≤ i ≤ 3), are estimated using the LSTM models

of their corresponding clusters, i.e. C1, C2 and C6, respectively.

4.4.2. Waiting Time Prediction400

We rely on a large number of historical bus trajectories (containing the

information of the arrival times of buses at each bus stop) to estimate the

waiting times at the transfer points (including the origin stop for waiting the

first bus service). The Historical Average (HA) method is utilized, which is

a data-driven approach. This avoids the assumption of a fixed distribution of

waiting times at a bus stop. Let’s assume that a passenger is expected to arrive

at the bus stop p at time t0 to wait for the bus (e.g. bus 179). Let BATp be the

dataset of historical bus arrival times at bus stop p containing data of d days,

then the historical average waiting time can be calculated as

Waiting(p) = HA(p, t0) =

∑d
i=1(ti|BATp

− t0)

d
,

where ti is the first time bus 179 arrives after time t0 in the i-th day of the

dataset BATp. Thus ti|BATp
− t0 is the historical waiting time on the i-th

day. For estimating the waiting time at an intermediate transfer point p′, the

passenger’s arrival time t′0 at this stop can be simply calculated as t0 plus the

estimated journey time between origin stop and the transfer point. Then the405

waiting time Waiting(p′) at p′ is estimated as HA(p′, t′0).
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The HA method is further optimized as follow: 1) the historical dataset of

bus arrival time is partitioned into two groups based on weekday and weekend,

as bus frequencies on weekends are much lower than weekdays; 2) the existence

of noise and missing values in the dataset of bus arrival time results in many410

incorrect records of historical waiting times. To mitigate this influence, only

records that are smaller than the 90 percentile are utilized in the HA method;

3) the average time interval between two consecutive bus arrivals (during a

period of 1 hour) is calculated, then all records that have waiting time larger

than two times of the average time interval are removed.415

5. Results and Analysis

5.1. Dataset

Road Networks. The road network of Singapore, obtained from OpenStreetMap1,

is utilized to derive the information of intersections as well the number of traffic

signals for any journey routes.420

Bus Route. The bus route information2 includes the ID (a five-digit number)

of each bus stop in sequential order, the GPS location (latitude and longitude)

of each bus stop, and the travel distance between any two consecutive bus stops.

We map the bus routes to the road network using the GPS locations of bus stops

to determine the sequence of road segments traveled by the bus line. The results425

are verified by comparing with Google Map via visualization. The bus route

data, together with road network information, is used to calculate the number

of intersections and traffic signals covered by a journey route. 30 bus services

are used in the experiment, which are shown in Fig. 3.

Bus Trajectories. A bus trajectory dataset is derived based on the real-world430

Bus Arrival Time dataset (the arrival time of the next bus for each bus stop,

at every minute) provided by the Land Transport Authority, Singapore2. The

dataset contains bus trajectory data of 30 bus lines from May 06 to July 07,

1https://www.openstreetmap.org/export
2https://www.mytransport.sg/content/mytransport/home/dataMall.html
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Figure 3: The spatial distribution of the bus routes utilized in the experiment.

2017 (63 days in total). Each bus trajectory is a sequence of points, and each

point contains the information of the stop ID, the GPS location of the bus stop,435

the timestamp (arrival time of the bus at the stop), and the bus line ID. With

the trajectories, the following features are extracted for each journey record:

the day-of-week, the journey start time, the journey travel time.

Pseudo Journey Records. It is challenging to obtain sufficient journey

records of individual passengers due to privacy issues. However, since the his-440

torical bus arrival time for each bus service at each bus stop is known, it is easy

to generate the correct journey record if the journey travel route, journey start

time, and bus arrival time at each bus stop (along the journey route) are known.

The generated journey records can be used to evaluate the performance of our

proposed method as well as train the baseline methods that rely on passengers’445

journey records. Please refer to [9] for more discussion on generating journey

records.

We first select a journey route (which may involve multiple bus services)

on the bus network and then generate a certain amount of journey records by

randomly selecting journey start time over a period of 63 days. The journey450

records are generated based on real-world historical bus trajectories involving 30
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bus lines in Singapore. Two types of journey records are generated: 1) journeys

on single bus lines without transfers and 2) journeys on multiple bus lines with

transfers. In the first category, we randomly select five journey routes (origin-

destination pairs) that cover each bus line and generate 100 journey start times455

on each day (from Jun. 24 to Jul. 07, 2017). Hence, the testing set contains

5 × 30 × 100 × 14 = 210, 000 journey records without transfers. In the second

category, we first identify valid transfer stops between any bus line pair, and

then randomly select the origin, destination and journey start time based on

the transfer points using a method similar to the first category. There are460

77 × 100 × 14 = 107, 800 journey records with single transfers in total, where

77 is the number of valid transfer points identified. We also identify 30 journey

routes involving twice transfers; thus 30 × 100 × 14 = 42, 000 journey records

with twice transfers are generated. The length of the generated journeys ranges

from 1.1 km to 51.6 km, with an average of 15.1 km.465

Weather data. Weather condition influences the bus travel speed by affecting

the bus stopping time at bus stops as well as the moving speed of vehicles.

Hourly-grained weather data are collected during the same time period, i.e.

from May 06 to July 07, 20173. There are 14 types of weather conditions, such

as thundershowers, strong thunderstorms, rain showers, light rain, sunny, etc.470

5.2. Baseline Methods for Bus Travel Time Prediction

1) Historical Average (HA) : It predicts the journey travel time as the aver-

age of all historical travel records of the same period that have the same origin

and destination [14]. HA is commonly used as a baseline for travel time pre-

diction [14]. Given the origin, destination, journey start time (interval), and475

historical journey records, the predicted travel time is the average of all histori-

cal travel records of the same period that have the same origin and destination.

In this work, the HA uses all the historical records that fall into the same time

interval of journey start time with the journey to be predicted. 2) Auto Re-

3https://www.timeanddate.com/weather/singapore/singapore
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Table 2: Comparison of results on MAE (minutes), MAPE (%) and RMSE (minutes), EPKM

(minutes/kilometer).

metrics HA ARIMA TFTS LR SVR DNN PCF TP-SCF

MAE 6.047 7.714 6.466 5.901 5.904 6.002 5.046 4.863

overall MAPE 11.363 13.181 11.837 11.086 11.049 11.147 9.343 8.603

performance RMSE 7.677 9.212 8.241 7.501 7.512 7.658 6.673 6.389

EPKM 0.395 0.504 0.423 0.386 0.386 0.392 0.330 0.318

journeys MAE 5.288 6.398 5.624 5.123 5.125 5.221 4.164 3.865

without MAPE 11.962 13.829 12.474 11.610 11.558 11.656 9.310 8.421

transfer RMSE 6.666 7.842 7.106 6.470 6.477 6.617 5.634 5.154

EPKM 0.384 0.465 0.409 0.372 0.372 0.379 0.303 0.281

journeys MAE 6.935 8.62 7.45 6.809 6.814 6.914 6.263 5.913

with MAPE 10.663 12.424 11.092 10.474 10.455 10.552 9.389 8.816

transfer RMSE 8.711 10.591 9.396 8.550 8.564 8.718 8.132 7.582

EPKM 0.412 0.512 0.442 0.404 0.405 0.411 0.372 0.351

gression Integrated Moving Average (ARIMA): It is well-known for predicting480

time series data, which makes predictions solely based on historical data [17].

3) TensorFlow Time Series (TFTS): We use the open source tool TFTS as one

baseline [11]. 4) Linear Regression (LR): It is utilized to model the relationship

between journey travel time and all the impact factors/features [20]. 5) Deep

Neural Network (DNN): LSTM based neural networks have been used for travel485

time prediction and have achieved better performance in recent years [4]. 6)

Support Vector Regression (SVR): Due to its high accuracy when trained with

a sufficiently large dataset, SVR has been used for travel time prediction in

some existing works such as [29]. 7) Partitioning and Combination Framework

(PCF): It also partitions a journey into waiting time components (waiting times490

at the transfer stops) and riding time components (bus riding times on the used

bus line segment) according to transfer points (not based on traffic patterns).

Different from the method proposed in this paper, it trained one LSTM based

prediction model for each bus line, which is used for predicting the riding time

components [9].495
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5.3. Results Comparison

The performance measures used are the Mean Absolute Error (MAE), the

Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),

and prediction error per kilometer (EPKM).

MAE =

∑F
i=1 |yi − ŷi|

F

MAPE =
100

F

F∑
i=1

|yi − ŷi
ŷi
|

RMSE =

√√√√ 1

F

F∑
i=1

(yi − ŷi)2

EPKM =
1

F

F∑
i=1

|yi − ŷi
dist(i)

|

where F is the size of the testing set, yi ∈ RF is the predicted value, ŷi ∈ RF is

the actual value observed, and dist(i) is the total distance of the i−th journey.

In the experiments, the data collected from May 06, 2017 to June 23, 2017 are

used for training the prediction model, while the data collected for the last two500

weeks (from June 24 to July 07, 2017) are used for testing. During training,

30% of the training set is used for validation.

5.3.1. Prediction Accuracy

Table 2 compares the performance of our proposed method TP-SCF and the

7 baseline methods. We observe that the two time series methods (i.e. ARIMA505

and TFTS) perform worse than other methods on all four metrics. This is be-

cause they need to update the prediction model with most recent observations

and hence, they are not suitable for long-term prediction (i.e. for a journey

with any start time within the testing period, e.g. next 14 days). Moreover,

they are sensitive to anomalies and will become unreliable if there is a huge510

difference in travel time between two consecutive time steps. The classic regres-

sion methods (HA, LR, SVR) achieve relatively better results than time series

methods because they train the prediction models using the entire training set,
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while the time series methods rely on only the most recent observations. How-

ever, they still fail to characterize the complex nonlinear correlations among the515

historical data. Even though the DNN method relies on the LSTM network

to capture the temporal patterns of the travel data (e.g. daily and weekly pe-

riodicity), it fails to properly model the waiting time at origin/transfer stops

due to insufficient features. For example, among the features that impact the

bus riding time, i.e. time of day, day of week, travel distance, number of bus520

stops/intersections/traffic signals, and weather conditions, only the first two fea-

tures seem to impact the expected waiting time (for offline prediction where the

bus location is not known). The proposed method produces better performance

than all baselines on MAE, MAPE, RMSE as well as EPKM. For example,

the average improvements compared with the baseline methods on MAPE are525

17.3%, 29.0%, 20.5%, 15.8%, 15.7%, 16.5%, and 4.4%, respectively. This is be-

cause the proposed method can capture heterogeneous traffic situations along

the journey routes. In particular, the comparison between the proposed method

and the PCF method verifies that it is important to identify and employ traffic

patterns for travel time prediction of bus journeys. In this way, it not only530

reduces the number of prediction models but also leads to better accuracy.

In addition, TP-SCF achieves better results on journeys without transfers

than that on journeys with transfers. This is because TP-SCF partitions a given

journey into multiple components (riding time and waiting time components),

and the journeys with transfers typically have more components than journeys535

without transfers thus leading to larger accumulated errors. On the other hand,

all the baseline methods obtained better MAE and RMSE on journeys without

transfers, but better MAPE on journeys with transfers. Since journeys with

transfers are typically longer than those without transfers, it is reasonable that

larger MAE and RMSE are obtained on journeys with transfers for the base-540

line methods. The decrease in MAPE is due to the fact that the increase in

prediction errors is not as large as the increase in journey length.
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Figure 4: Effect of k on the performance of travel time prediction.

5.3.2. Effect of parameters k, K, and ρ1

We now discuss the effect of hyperparameters and how to select the param-

eters. TP-SCF method restricts the segments of each bus line are associated545

with at most k clusters. Fig. 4 shows the effect of k on the prediction error,

where K and ρ1 are set to 10 and 0.5, and k ranges from 2 to 6 step by 1. It

can be observed that the best MAE and RMSE value is achieved when k = 3.

When k reduces, the heterogeneous traffic situations cannot be fully character-

ized, thus leading to lower prediction accuracy. However, large k will also result550

in low accuracy because a journey route will be partitioned into too many pieces

leading to large accumulated errors for prediction.

As discussed before, two matrices V and H are obtained via the NMF

method, and the bus line segment clustering relies on the matrix V. The row

Vi of matrix V contains the weights of the linear combination of each cluster555

pattern (i.e. each row of H) to form Xi. Our goal is that, in each row, only two

or three values are large while other values are relatively small. The rationale

is that we do not simply assign the cluster c (c = arg maxj Vi,j) to the line

segment of Xi, thus Xi should have alternative choices, i.e. the second or the

third largest weight. Fig. 5(a) shows the results of V with varying K, where560

‘top-2-portion’ (‘top-3-portion’) indicates the portion of the largest two (three)

weights over the total weights of the corresponding rows. Note the top-i-portion
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Figure 5: Effect of parameters K and ρ1 on traffic pattern clustering.

is normalized by dividing i/K where K is the number of clusters, e.g. the top-2-

portion for K = 8 is divided by ‘2/8 = 0.25’. We observe that the top-2-portion

and the top-3-portion have similar changing trend and both of them achieve the565

highest value when K = 10. Thus we select K = 10 to characterize the traffic

conditions of all bus lines and distinguish the underlying latent grouping. This

indicates that we can characterize the entire traffic conditions of all bus lines

and distinguish the underlying latent grouping with 10 traffic patterns.

Fig. 5(b) shows the ‘top-2-portion’ and ‘top-3-portion’ for K = 10 with570

varying ρ1. The values in this figure are not normalized as they belong to the

same cluster number. It can be observed that ρ1 = 0.5 achieves the highest

value for both the top-2-portion and top-3-portion. Also, since small ρ1 allows

the NMF to reduce the error between matrix X and the approximation V×H,

meaning that smaller ρ1 is prefered. Thus ρ1 is set to 0.5.575

Figure 6 compares the effect of different methods of traffic pattern identifica-

tion (i.e., NMF and K-means) for prediction performance in terms of (RMSE).

The number of traffic patterns K is set to 8, 10, and 12, respectively. The pa-

rameter k is set to 3, meaning that all segments of a same bus line are associated

with at most 3 clusters, since partitioning a single bus line into too many clus-580

ters leads to poor performance. We can observe that NMF performs better than

K-means, which demonstrates the superiority of the NMF method for discov-

ering latent traffic situations. This is because by using the NMF method, each
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clustering) for prediction performance in terms of RMSE.

segment has multiple alternative clusters of similar traffic patterns. As such,

some bus line segments can be assigned to alternative clusters (second/third585

best choice) if the restriction of parameter k is violated. On the other hand,

using the K-means algorithm, some bus line segments do not have a satisfactory

second choice, and assigning them to dissimilar clusters leads to performance

loss in prediction.

5.3.3. Runtime of Prediction Model590

We test the running time of journey time prediction on a PC with 3.50GHz

CPU and 32GB RAM. Despite the longer training time of LSTM network, the

bus journey prediction is very efficient. During the testing phase to estimate ev-

ery 1000 journey queries, our TP-SCF method takes 0.567s, while the 6 baseline

approaches, i.e. HA, ARIMA, TFTS, LR, SVR, DNN, and PCF, take 0.008s,595

0.293s, 0.278s, 0.007s, 0.032s, 0.062s, 0.624s, respectively. Compared with the

baselines, our method takes a little longer time as it needs to predict the travel

time for each involved traffic condition and the waiting time at each transfer

point, before merging them to obtain the final solution. It is worth noting that

the running time can be significantly accelerated by deploying the predictors on600

a powerful server and running multiple predictors simultaneously. For example,

when tested on the GPU (NVIDIA Quadro M4000) with 3.50GHz CPU and

27



32GB RAM, the TP-SCF method requires 0.153s to produce the results for the

1000 test instances, which provides an acceleration of 3.7 times.

6. Conclusions605

In this paper, we investigated the problem of predicting bus journey time

for passengers, that takes into account both the bus riding time and the waiting

times at transfer points. We proposed an approach to automatically learn the

heterogeneous traffic situations of different bus line segments, and train a sep-

arate prediction model for each disparate traffic pattern to improve prediction610

accuracy. We showed that, without using users’ travel records, we can accu-

rately predict the travel time of bus journeys by just relying on historical bus

travel data. In addition, our work is the first to demonstrate that bus travel

time prediction models do not need to be confined to the spatial connectivity of

the bus lines, and exploiting common traffic patterns across different bus line615

segments can lead to better prediction accuracy. Our work also demonstrated

that the sequence of bus line segments can be flexibly changed (segment coa-

lescing) without strictly following the spatial connectivity of the bus lines. By

conducting extensive experiments on large scale real-world bus travel data, we

showed that our method can accurately predict the travel time for any given620

journeys and significantly outperforms the baseline approaches.

Predicting the waiting time at origin/transfer stops is challenging for offline

scenarios due to the lack of effective features to characterize the dynamic sit-

uations. Currently, the proposed method for waiting time prediction has not

fully considered the temporal dependency (e.g. daily and weekly periodicity).625

We plan to improve the algorithm for waiting time prediction in our future

work by taking into account the frequency information of different bus services,

as arrival times of a relatively low frequent bus service may follow a specific

distribution (e.g. some time slots have much higher probability of bus arrival

than others). In addition, the waiting time and bus riding time are currently630

predicted separately in our approach. In our future work, we plan to explore
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prediction methods that jointly considers both the bus riding time and wait-

ing time at the transfer stop. For example, one can generate a certain amount

of individual passengers’ journey records using the method presented in Section

5.1, and train a prediction model using trip records that contain both bus riding635

time and waiting time.
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