DISSECT: Dynamic Skew-and-Split Tree for
Memory Authentication

Saru Vig*, Rohan Juneja™ and Siew-Kei Lam*

* Nanyang Technological University, Singapore, TQualcomm, India

Abstract—Memory integrity trees are widely-used to protect
external memories in embedded systems against replay, splicing
and spoofing attacks. However, existing methods often result in
high-performance overhead that is proportional to the height of
the tree. Reducing the height of the integrity tree by increasing its
arity, however, leads to frequent overflowing of the counters that
are used for encryption in the tree. We will show that increasing
the tree arity of a widely-use integrity tree from 2 to 8 can result
in over 200% increase in memory authentication overhead for
some benchmark applications, despite the reduction in tree height.
In this paper, we propose DISSECT, a memory authentication
framework which utilizes a dynamic memory integrity tree that
can adapt to the memory access patterns of the application
by progressively adjusting the tree height and arity in order
to significantly reduce performance overhead. This is achieved
by 1) initializing an integrity tree structure with the largest
arity possible to meet the security requirements, 2) dynamically
skewing the tree such that the more frequently accessed memory
locations are positioned closer to the tree root (overcomes the
tree height problem), and 3) dynamically splitting the tree at
nodes with counters that are about to overflow (overcomes
the counter overflow problem). Experimental results undertaken
using Multi2Sim on benchmarks from SPEC-CPU2006, SPLASH-
2, and PARSEC demonstrate the performance benefits of our
proposed memory integrity tree.

I. INTRODUCTION

Numerous schemes have been reported for mitigating mem-
ory attacks [1], [2]. These methods inevitably make use of some
form of encryption and a memory integrity tree. In an integrity
tree, the memory contents are stored as leaf nodes of the
tree after encryption/hashing. The tree structure is constructed
by recursively applying a primitive authentication technique
(e.g., MAC, hash) from the leaf nodes to the root. During
authentication, a validation is performed at each level of the
tree until the root, which necessitates multiple memory accesses.
As such, memory authentication incurs a performance overhead
that is proportional to the height of the tree. The works in [3],
[4] discuss methods to reduce the height of the integrity tree by
increasing the tree arity. For example, [3] designed a tree with
128-arity to reduce the height of integrity trees for securing
large memories. For protecting a 16 GB memory, they were
able to reduce the tree height to 4 levels.

In order to construct shallow trees with larger arity, [3],
[4] employ varying encryption counter configurations. Such
approaches, however, has their limitations. Firstly, as reported
in [3], increasing the tree arity is not a strategy that can be
adopted universally. For example, they cannot be applied to
Message Authentication Codes (MAC) trees whose arity is
limited to 8 irrespective of the counter design in the tree node.
The arity for MAC trees depends on the MAC per entry and

the cache line size. Secondly, the success of methods such
as [3], [4] is dependent on the counter nodes being cached
efficiently, as this contributes to reducing the number of counter
writes and overflows on higher levels of the tree. However,
introducing a dedicated cache for the counter nodes is not
always possible, especially for embedded systems with tight
constraints. Moreover, approaches that rely on caching the tree
nodes have reported overall performance degradation due to
cache contention [5]. Storing the metadata of the tree nodes
in caches for large trees consumes substantial memory space.
[5] reported that unless the cache is reasonably big, the tree
nodes will occupy 25% - 50% of the cache, leading to a large
number of cache misses.

In systems that require strong protection, when a counter
overflows, it is essential that a new key is generated and the
entire tree is re-encrypted using the new key. Without this
preventive measure, the tree contents will not be secure against
replay attacks if counters are re-initialized. As such, the use
of larger arity can inadvertently lead to higher performance
overheads due to more frequent counter overflows. For example,
the technique proposed in [3] employs a 128-ary integrity tree
which is made possible through the use of a single sizable
major counter per cache line and several smaller minor counters
in the tree nodes. As mentioned in their work, a non-optimized
design packing of 128 counters per cache line results in 3-
bit minor counters that can overflow in just 8 writes. As each
overflow requires 256 extra memory accesses, this will result in
significant performance degradation. Even with their optimized
design, the counters tend to overflow frequently especially for
certain data streaming applications, leading to high performance
overheads. The experiments conducted in [3] demonstrated
cases where the higher performance overheads due to counter
overflow offset the gains obtained due to the reduction in tree
height.

Reducing counter size to increase arity, reduces the security
against replay attacks. The probability of a successful replay
attack depends directly on the size of the counter. If an attacker
manages to guess the counter value, the system security will
be compromised. Thus, increasing arity by reducing counter
size is only an option for systems that do not require a high
level of protective measure [6], or if other mechanisms to
detect replay attacks are available.

Another means of reducing the tree height during memory
authentication is by skewing the tree based on static or run-time
characteristics of the application. The work in [7] proposed to
skew the integrity tree based on the static memory profiling
results of the application. At run-time, the structure of the tree
remains static throughout. ASSURE [8] employs smart MACs

in an integrity tree, which can reduce the authentication time by
dynamically creating a smaller sub-tree within a standard binary
tree. The authors in [9], [10] propose approaches to dynamically
skew trees based on memory access patterns, where the tree
is restructured at run-time to shift memory locations that are
frequently accessed closer to the root, thereby reducing the
number of levels to be verified during authentication. Although
the authors in [10] report performance gains as a result of
dynamically skewing the integrity tree, their design was limited
to a 2-ary tree.

A. Main Contributions

In this paper, we propose a memory integrity tree structure
and the corresponding authentication framework that simulta-
neously addresses the problems associated with tree height and
counter overflow. We call the proposed framework DISSECT,
which stands for Dynamic Skew-and-Split Tree for Memory
Authentication. DISSECT enables the height and arity of the
proposed memory integrity tree structure to be dynamically
adjusted based on the run-time memory access patterns in order
to reduce the performance overhead for authentication. This
is achieved by 1) initializing an integrity tree structure with
the largest arity possible to meet the security requirements, 2)
dynamically skewing the tree such that the more frequently
accessed memory locations are positioned closer to the tree root,
and 3) dynamically splitting the tree at nodes with counters
that are about to overflow.

DISSECT leverages on the complementary benefits of
reducing tree height and increasing arity. This is based on the
observation that nodes which tend to encounter counter overflow
are also the nodes that are most frequently accessed (the
counters associated with each memory location are incremented
on the memory write access). DISSECT overcomes the tree
height problem by shifting the nodes that are associated with
the most frequently accessed memory locations closer to the
root (to reduce the number of authentication levels of these
nodes), and restrict the splitting process to these nodes when
their counters are about to overflow.

We performed a detailed analysis on existing methods to
show the effects of varying the counter size on authentication
time, and demonstrate that increasing arity for large memory
integrity trees can negatively impact the performance of the
system due to the counter overflow problem. Experimental
results undertaken using Multi2Sim on benchmarks from
SPEC-CPU2006, SPLASH-2, and PARSEC demonstrate that
the combined benefits of the proposed skewing and splitting
scheme provides a scalable solution for low overhead memory
authentication, particularly when the data to be protected is
large.

II. PROPOSED TREE STRUCTURE
A. Overview

Our framework begins with a balanced integrity tree with a-
ary. An example of 4-ary tree is shown in Fig. 1a. In this work,
we have demonstrated the proposed approach on the Tamper
Evident Counter (TEC) tree [11]. Note that DISSECT can be
also applied to other memory integrity trees (e.g. Hash Trees,
Merkle Tree). TEC tree provides security utilizing Block AREA
(Added Redundancy Explicit Authentication) strategy. The tree
nodes are partitioned into two classes, Data Chunk (DC) and

Counter Chunk (CC). The orange and blue blocks in Fig. la
are the CCs and DCs respectively. A nonce, which is unique
to every chunk, is added to each tree node before encryption.
Nonce includes a count concatenated with the memory address
location of every node. Count is the number of write requests
performed on each node, and is added to detect replay attacks.
During authentication, the nonce is checked with its immediate
parent node. Both DC and CC are encrypted and therefore
provide confidentiality at no extra cost. This is a significant
advantage of TEC tree over its counterparts.

In DISSECT, initially a balanced tree is divided into different
groups with each of them comprising of a/2 nodes. The
numbers in Fig. la indicate the group numbers. The tree
arity is determined based on the system’s cache and security
requirements, i.e., cache line size and encryption block. At
run-time, the tree is skewed according to the memory access
patterns. We have magnified the left portion of the 4-ary tree
in Fig. 1b (i.e. the red bounding box in Fig. 1a) to illustrate
an example of skewing. In this example, Group 15 has been
switched with its uncle group, Group 3, since the former was
accessed more frequently. As a result, Group 15 has been
elevated one level closer to the root. Subsequent access to
Group 15 will require a lesser number of authentication steps.

Furthermore, when any node is about to exceed its maximum
local counter value, the node is split. A new node is created,
and half of its children are assigned to the new node. An
example of the tree split is shown in Fig. lc, where we assume
that the local counter of node 1 has reached its maximum
value. Consequently, the arity of node 1 has decreased from 4
to 3, resulting in extra counter bits for nodes in Group 15. We
will discuss in detail each of the above steps in the following
sections.

B. Proposed Tree Node Structure

In order to achieve dynamic skewing and splitting efficiently,
we need to redesign the nodes of the memory integrity tree. The
protected data from the external memory is first divided into
equal-sized blocks, and each block is used to create a single
DC. DC comprises of ’data’ concatenated with a nonce value.
Nonce is created using a count value, ¢;, which is equal to the
number of write requests made to the DC. ¢; is concatenated
with the node ID, n;, making the nonce unique to each node. p;,
si, LR; are the other attributes of each DC as shown in Fig. 2a.
p; stores the node ID of the parent and s; stores the node ID of
the sibling of n;. LR; denotes whether the node is a left child or
a right child to its parent. These attributes are important as they
contribute to the skewing and spitting steps. In particular, for a
conventional balanced tree, the parent’s position can be easily
inferred from the child’s position. However, when skewing or
splitting is undertaken, the position of the nodes can no longer
be inferred easily, and hence it is vital to explicitly store the
parent’s information. The sibling’s information will be used
to check the skewing requirements, as will be discussed in
Section III-B.

The counters, c;, are also stored in the off-chip memory in a
hierarchical tree structure format. In the rest of the paper, we
refer to CC as the node where the counters are stored. Each CC
also comprises of its own nonce and other attributes, similar to
that of a DC. CC also store Split;, which denotes whether the
node or any of its children have split and thus have an increased

Fig. 1: An example structure of (a) 4-ary DISSECT (b) post Skew (c) post Skew-and-Split

counter size. A Split flag is necessary for checking a given
nodes counter width. An entire CC is encrypted as a single
block before being stored off-chip in the external memory. This
scheme is recursively applied to subsequent levels of the tree
till we obtain a single CC, called the root node of the tree.
The count of the root node is stored on-chip securely. Thus,
the tree structure reduces the on-chip memory overhead to a
single node while providing full memory integrity for multiple
leaf nodes.

III. PROPOSED SKEW-AND-SPLIT FRAMEWORK

The proposed framework consists of the following steps:
1) initializing an integrity tree structure with the largest arity
possible to meet the security requirements, 2) dynamically
skewing the tree such that the more frequently accessed
memory locations are positioned closer to the tree root, and 3)
dynamically splitting the tree at nodes with counters that are
about to overflow.

A. Initialize Tree Structure

A memory block (data + nonce) loaded by the processor
on a cache miss must be a multiple of the ciphered-block
length. Therefore, the ’data’ width for a given tree node is
determined such that on a cache miss, a single memory block
unit will forward ’data’ of size equal to the cache line size
upon verification. The structure for a 512-bit cache line with
256 cipher block length is shown in Fig. 2b. Based on Eq. 1,

Counter Chunk | Counters | Parent |Sibling| LR | Split | Node | Counter | PAD |

| Parent | Sibling | LR | Node | Count |

(@)

Data Chunk | Data

Block 1 [171 bits |

171 bits | 64 bits

170 bits |

%/—/

Data

Block 3 64 bits

I
Block 2 I
I
I

Nonce I

| AES Block 256 bits]

Block 1 [171 bits | 64 bits | Parent |

Block 2 64 bits | Sibling | I

[171 bits |
I

3]

170 bits | o] I

6abits |

Data Nonce I

I
I
Block 3 I
I
I

AES Block 256 bits |

Fig. 2: (a) Proposed Node Structure (b) memory block with
512-bit cache line for TEC tree, and (c) memory block of
DISSECT

we can determine the arity and ’counter’, where ’counter’ is
the bit width of a single local counter of each tree node.

data

ey
counter

We also improvised the structure of the DC introduced in
Fig. 2a and split the additional attributes (i.e. p;, s;, LR;) over
the data chunks in a single memory block as shown in Fig. 2¢
to maximize the memory utilization. This is possible as on
a cache miss, these data chunks of a single memory block
have to be verified together. As such, the proposed structure
avoids the redundancy of storing the parent/sibling information
in each node individually.

As an example, for a 512-bit cache line, the minimum size of
the nonce required for data to be equal to the cache line is one
AES block (256-bit). The resulting memory block distribution
is three AES blocks long, i.e. 768-bit as shown in Fig. 2b. To
maintain 170-bit ’data’, we calculate the ’counter’ size to extend
the arity to 8 using Eq. 1, which is 21-bit. The possibility that
a replay attack will be successful is 1/2?!. Following the same
principle, we customize data/counter chunks of the proposed
tree structure to fit the given cache line, as shown in Fig. 2b
and 2c. Note that the counter width should be determined based
on the security requirements against replay attacks, which is
discussed in Section IV. Compared to the TEC tree with the
same security strength, the proposed method results in a lower
arity. To retain the 21-bit width of the counters, the proposed
tree will only be able to accommodate six child counters
instead of eight. Similarly, different counter sizes will result in
different arity. For the TEC tree, arity must be a power of 2
to simplify the hardware computations of parent address [11].
Such a restriction does not apply to the proposed design as
the parent node number is explicitly stored in all the chunks.

The extra attributes (i.e., p;, si, LR;, and Split;) of each CC
utilize extra bits, reducing the remaining bits to store counter
values. For a 32-bit tree, the last level is made up of DCs and
cannot be a parent to any node. Thus, p; requires 31-bits. s;
stores sibling group number (each group has a/2 nodes, so
there are half as many groups as parents) and requires 30-bits.
Split; will hold information required to decide if a split has
occurred, and if so, which of the left or right group of children
was assigned to new nodes. LR; indicates if the node is a left
or right child to its parent.

arity =

B. Dynamic Skewing

For an ag-ary integrity tree, the attributes must now incorpo-
rate the information of (a-1) siblings instead of just 1. To avoid
storing this additional meta-information, we create ’group’
of a/2 nodes and store a group ID as s;. The benefits of
dynamically skewing a tree are extensively discussed in [10],
[9]. We have improvised the ShiftUp algorithm introduced
in [9] for higher arity trees. The ShiftUpGroup procedure to
perform dynamic skewing is applied to such groups instead
of single nodes. The storage is then reduced to storing only a
single sibling group number (similar to a 2-ary design where
a single sibling node number is stored).

ShiftUpGroup: Let T be the group whose node is to be
checked for shifting. And let Q be the parent node.

1) Check if total ¢; of T is greater than its corresponding

sibling group, s;, total count by 1, and is also greater
than the total count of its uncle group, sp,.

2) Exchange T with its uncle group.

3) Exchange the new children node of Q, i.e. switch their
positions.

4) Recursively perform steps 2-4 for all nodes on the path
from T to the root node.

C. Dynamic Splitting

Algorithm 1: Dynamic Split Algorithm

A, Q : pointers to Nodes
while A is not root do

if count,, = max then

Q < create new node
Po < pa

s, < nodeg

SO < SA

if Zi:mygroup ¢ 2 Zi:siblinggmup ¢i then
for all n; in my group do

pi < O;

Update s;;

end

Update countg 4

else

for all n; in my sibling group do
pi <+ O,

Update s;;

end
Update countg 4

end

else
‘ A PA
end

end

As shown in Algorithm 1, when a counter value reaches
its (max-1) permissible limit, it is selected for splitting its
children nodes. A new node is created and half the children
is assigned to this node, thereby providing additional bits to
their respective counter values to prevent overflowing. It is
noteworthy that although splitting will push nodes one level
down, the subsequent shift operation promotes the nodes to a
higher level. Also, splitting is performed recursively, so it is
highly likely that further splits will follow on the same nodes.
As each split incurs an additional tree level, the tree size is
bound to increase. However, the number of increased levels
will be relatively small compared to the original tree height.
This is due to the fact that nodes which undergo splitting are
likely to have shifted closer to the root (since they are accessed
frequently).

D. Memory Authentication

Algorithm 2 describes the verification procedure for the
proposed method.

ReadNCheck: This function is called when there is a read
request sent to the protected data region and thus requires
verification.

1) Call the requested DC’s parent CC from external memory.

Algorithm 2: Memory Authentication with DISSECT

begin
Initialize tree with data elements as data chunks on leaf
nodes
if (memory access request(addr)) then
if read_request(addr) then
| ReadNCheck(addr)
end
if write_request(addr) then
ReadNCheck(addr)
WriteNUpdate(addr)
Rebalance_flag + rebalance_check(addr);
Split_flag <— Split_check(addr)
end
if Rebalance_flag then
| ShiftUp(addr);
end
if Split_flag then
| Split(addr);
end

end
end

2) Verify decrypted CC with the child counter value.

3) Repeat above steps till the root node is reached.

4) If root node verifies correctly, return the requested data.

WriteNUpdate: This function is called when there is a write
request sent to the protected data region and thus requires
verification.

1) Call the requested DC’s parent CC from external memory

2) Verify decrypted CC with the child counter value.

3) Increment c;.

4) Check for ShiftUpGroup and Split.

5) Repeat above steps till the root node is reached.

6) If root node verifies correctly, return the requested data.

IV. SECURITY ANALYSIS

The proposed method is able to mitigate spoofing, splicing,
and replay attacks. We also maintain confidentiality by encrypt-
ing the data using the AES algorithm. We use a block size and
key of 128 bits (probability of a successful attack is extremely
low i.e., 1/2!2%). The key used for encryption is securely stored
on-chip. The AES mode used is Electronic Code Block (ECB).
This enables each block to be processed independently, reducing
the granularity of integrity verification. Only one cipher block
is loaded and decrypted for one load/store instruction. The
only drawback is that it produces the same ciphered text each
time for a particular data, but we overcome this limitation by
using a nonce which makes each ciphered chunk unique.

Data is protected by making use of the block level AREA
scheme. This scheme makes use of Shannon’s diffusion
property [12] to add some redundant data to the actual data
before encryption and to check it each time after decryption.
This is the motivation for adding a nonce to the data to form a
data chunk. Once the chunk is encrypted, the data and nonce
cannot be differentiated. For a a-bit nonce, the probability that
the last a bits remain the same after tampering is 1/(2¢).

The nonce consists address and count i.e. a-bit nonce = d-
bits of address + r-bit of count. This makes sure that the nonce
is unique for each location. The probabilities of a successful
bus attack for our given threat model are as shown in Table I

TABLE I: Security Limitations

Attacks Spoofing

1/20 0

Splicing ~ Replay

1/2"

Time (Sec)

Spoofing attacks are detected by making use of the block
AREA scheme. The nonce is checked during the verification
step after decryption. Any change on the data will be reflected,
and the last a bits obtained would have changed. This mismatch
would trigger an alarm, and the data will not be passed to the
processor. The probability is derived directly from the use of
block AREA scheme as explained earlier.

200
180 -+ --Raytrace Mcf
160

140

-
R
S

.a
g
8
5
8
e
i
-]
I
°©
P
8
S
@
&
w»
]
]
«

Authnetication time (s)

26 25 24 23 22 21

Fig. 3: Analysis of counter overflow problem

Splicing attacks are detected during the first stage of
verification. As the address bits are stored in our nonce, if there
is a mismatch between the address used to fetch the chunk
and the bits extracted from the chunk, then the data would not
be processed further, and an alarm would be raised. Thus, a
32-bit address space is completely protected from attacks if
we allocate 32 bits to the address segment of the nonce.

Replay attacks are prevented due to the property of unique-
ness of the nonce. If an address is replayed, the count values
of the replayed and the current version will not match. The
probability for a successful attack is directly dependent on the
length of the count used in the nonce. The attack would be
detected at the first non-replayed data block. If the entire tree
is replayed, an alarm would be raised at the last verification
step of matching the root node with the on-chip counter.

V. PERFORMANCE EVALUATIONS

For our evaluations, we simulated applications from SPEC-
CPU2006, SPLASH-2, and PARSEC benchmark suites on
Multi2Sim [13]. Multi2Sim is an application-only tool intended
to simulate x86 binary executable files. We perform experi-
ments on a single-core system. We ran the benchmarks for
two different tree architectures: 1) Balanced TEC tree [11]
implementation (BTEC) 2) DISSECT. Similar to the example
explained in Section III-A, we assume a system with 512 cache
line.

In order to understand the counter overflow problem in
existing methods, we first show the authentication time for
write-intensive applications, and thus have a high probability
of overflowing, (i.e., Raytrace, Mcf, Gcc, and Omnetpp)
implemented with BTEC in Fig. 3. Authentication time is
the time spent by the processor to perform integrity check on

2.5

1.5

Normalized authentication time

(=]
w

Blackscholes Radix Cholesky Radiosity

BTEC(4-ary) ™ DISSECT(4-ary)

lu_cb

Raytrace Ocean_cp Omnetpp Xalancbmk

BTEC (8-ary) ™ DISSECT (6-ary)

Fig. 4: Normalized authentication time

the leaf nodes. The authentication time is directly proportional
to the number of tree levels accessed during integrity check.
The counter width is varied from 26 to 21. For counter width
of 22-26 bits, BTEC can maintain 4-arity based on Eq. 1.
When the counter width is reduced to 21, it is possible to
increase arity to 8. We can observe that the authentication
time increase as the counter size decreases. With a single bit
reduction in the counter width, the authentication time will
increase exponentially for certain applications. In scenarios
where the counter overflows, the cost of re-encrypting the entire
tree will depend on the data size being protected. Mcf and Gee
have the largest tree size in terms of data region being protected.
Thus, the overhead due to overflow for these applications is
more pronounced. For Omnetpp, although it overflows, the
overhead is not significant as only a relatively smaller data
size needs to be protected. For Raytrace, we can observe that
increasing arity is still able to improve performance despite
counter overflows. This is because Raytrace overflows the least
amount of time compared to the other applications in Fig. 3.

We have presented results in Fig. 4 to compare the nor-
malized authentication time. For practical scenarios, a 32-bit
counter is a safe size. Hence, we start with a 4-ary BTEC
and 4-ary DISSECT with 32-bit counters; and then increase
the arity to 8-ary BTEC and 6-ary DISSECT with smaller
21-bit counters. Note that the security strength for the 4-ary
BTEC and 4-ary DISSECT, as well as the 8-ary BTEC and
6-ary DISSECT are the same respectively. It can be observed
that for the same security strength, DISSECT has significantly
lower authentication overhead than BTEC. 6-ary DISSECT,
even with a lesser arity than 8-ary BTEC, shows on average
20% improvement in terms of reduction in authentication
time over BTEC. For memory-intensive applications (e.g., Mcf,
Omnetpp, Xalankbmk, Gcce) the counter overflow overhead for
8-ary BTEC actually causes the applications to perform even
worse than the same tree with 4-arity. The results demonstrate
that for the same security strength, DISSECT will outperform
BTEC with a higher arity tree, as it is capable of reducing the
overhead due to counter overflow.

VI. CONCLUSION

In this paper, we have presented DISSECT, a skewed integrity
tree which can be customized to increase arity depending on the
security and performance requirements. The tree is dynamically
skewed during run-time to place frequently accessed nodes
closer to the root to reduce tree height. Increasing arity by

reducing counter width can cause overflows. We propose a
technique to tackle local counter overflows, by dynamically
splitting only those nodes whose local counter is about to
exceed its maximum permissible value. These techniques have
been evaluated on Multi2Sim using various benchmarks to
demonstrate their benefits.

REFERENCES

[1] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and
L. Torres, “Hardware mechanisms for memory authentication: A survey
of existing techniques and engines,” in Transactions on Computational
Science IV. Springer, 2009.

[2] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,

and M. Horowitz, “Architectural support for copy and tamper resistant

software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168-177, 2000.

G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and

M. Qureshi, “Morphable counters: Enabling compact integrity trees

for low-overhead secure memories,” in 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). IEEE, 2018,

pp. 416-427.

[4] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing

paging overheads in sgx with efficient integrity verification structures,”

in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 665-678.

B. Gassend et al., “Caches and hash trees for efficient memory integrity

verification,” in High-Performance Computer Architecture, 2003. HPCA-

9 2003. Proceedings. The Ninth International Symposium on. 1EEE,

2003.

[6] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption and
authentication,” in ACM SIGARCH Computer Architecture News, vol. 34,
no. 2. IEEE Computer Society, 2006, pp. 179-190.

[71 S. Vig, T. Y. Tzer, G. Jiang, and S.-K. Lam, “Customizing skewed trees
for fast memory integrity verification in embedded systems,” in 2017
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 1EEE,
2017, pp. 213-218.

[8] J. Rakshit and K. Mohanram, “Assure: Authentication scheme for

secure energy efficient non-volatile memories,” in Design Automation

Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 2017, pp. 1-6.

S. Vig, G. Jiang, and S.-K. Lam, “Dynamic skewed tree for fast memory

integrity verification,” in 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE). 1EEE, 2018, pp. 642-647.

S. Vig, R. Juneja, G. Jiang, S.-K. Lam, and C. Ou, “Framework for fast

memory authentication using dynamically skewed integrity tree,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2019.

R. Elbaz et al., “Tec-tree: A low-cost, parallelizable tree for efficient

defense against memory replay attacks,” in International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 2007.

C. E. Shannon, “A mathematical theory of cryptography,” Memorandum

MM, vol. 45, 1945.

R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: a

simulation framework for cpu-gpu computing,” in 2012 21st International

Conference on Parallel Architectures and Compilation Techniques (PACT).

IEEE, 2012, pp. 335-344.

3

=

[5

=

[9

—

[10]

[11]

[12]

[13]

