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Abstract

Accurate bus travel speed prediction can lead to improved

urban mobility by enabling passengers to reliably plan their

trips in advance and traffic administrators to manage the

bus operations more effectively. However, the increasing

complexity of public transportation networks pose a signif-

icant challenge to existing prediction methods as the bus

operations are affected by numerous factors such as vary-

ing traffic conditions, tight bus operation schedules, wide-

ranging travel demands, frequent accelerations/decelerations

at bus stops, delays at intersections, etc. This paper aims

to achieve accurate bus speed prediction by identifying im-

portant intrinsic and extrinsic features that impact the bus

speed, and their significance in specific situations. We pro-

pose to jointly incorporate multiple feature components that

provide discriminating information to train the prediction

model by exploring the spatial correlation, temporal corre-

lation, as well as contextual information (e.g. road charac-

teristics and weather conditions). In particular, we introduce

an attribute-driven attention network model to integrate the

feature components, which considers the heterogeneous in-

fluence of different feature components on bus speed and

dynamically assigns weights to the learned latent features

based on specific traffic situations. Extensive experiments

using real bus travel data involving 42 bus services show that

our proposed method outperforms six well-known methods.

1 Introduction

Accurate prediction of the bus travel speed are essen-
tial for improving the performance of Intelligent Trans-
portation System, especially in Advance Traffic Man-
agement System and Advanced Traveler Information
Systems [1]. Passengers can rely on the prediction to re-
liably plan their trips, allowing them to reach their des-
tinations on time. Traffic administrators can utilize the
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predictions to manage the public transportation system
by scheduling the buses to meet travel demands, hence
mitigating crowdedness in buses and at bus stops. This
reduces the passenger waiting time at transfer points
which contributes to improve the passengers’ experience
and increase ridership in public transports.

Although traffic speed prediction has been exten-
sively studied [2], achieving accurate travel speed pre-
diction is still a challenging problem due to many com-
plex issues. For example, features of different traffic con-
ditions are usually influenced by numerous factors such
as spatial dependencies among different road segments,
temporal correlation with historical observations, and
external factors (e.g. weather condition, road charac-
teristics). Moreover, there have been limited studies on
predicting the travel speed of buses [4], which behaves
significantly different from that of general vehicles (e.g.
private cars, taxis, etc.). This is because bus travel
speed, particularly in urban public transportation net-
works, is affected by numerous factors such as varying
traffic conditions (i.e. traffic flow, congestions), tight
bus operation schedules, wide-ranging travel demands,
frequent accelerations and decelerations at bus stops,
delays at intersections, etc. As such, bus speed predic-
tion remains a challenging and unresolved problem.

To achieve an accurate prediction, it is necessary
to explore and incorporate sufficient factors to train the
prediction model. In addition, different factors have
varying degree of impact on bus travel speed under dif-
ferent situations. For example, weather conditions im-
pact the travel speed more significantly on snowy and
rainy days, while road network characteristics (e.g. road
type, number of lanes), instead of congestion indicators,
affect the travel speed on road segments that are less
likely to be congested. Therefore, it is critical to deter-
mine the factors that contribute to the bus travel speed
and their relative importance in various traffic situa-
tions. Based on this hypothesis, we propose an efficient
model for bus speed prediction in road segments by 1)
identifying sufficient and meaningful intrinsic and ex-
trinsic features that impact the bus travel speed and
2) introducing an attribute-driven attention network
model to integrate the feature components, which con-
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siders the heterogeneous influence of different feature
components on bus travel speed and dynamically assign
weights to the learned latent features based on the spe-
cific traffic situations. The main contributions of this
paper can be summarized as follows:

1) We explore spatial, temporal correlations, and
contextual information to extract sufficient features to
train our machine learning model in order to achieve
accurate bus speed prediction. To aggregate the local
neighbourhood information, we utilize a structure-to-
vector embedding technique based on the Pearson Cor-
relation of bus speeds between road segments. We mod-
ified the embedding technique by introducing separate
parameters for each neighbouring road to take into ac-
count the heterogeneity of neighbourhood influence on
bus speed. We employ the global-spatial correlation as
the criteria to group similar road segments (similar in
traffic patterns but could be spatially distant) into clus-
ters and train a separate predictor for each cluster. In
this way, each cluster can have sufficient training exam-
ples which is important for training deep learning based
predictors. This strategy can easily scale to large road
networks by choosing a suitable number of clusters.

2) In addition to relying on LSTM (Long Short-
Term Memory) network to capture the temporal de-
pendency, we extract temporal correlation features that
include both recent historical information (short-term
pattern) and periodicity information (long-term pat-
tern). In addition to spatiotemporal correlation, we also
incorporate contextual information, which includes road
network characteristics (road length, road type, number
of lanes, number of bus stops and traffic lights on the
road), and other extrinsic factors such as weather con-
dition information, holiday events, and day-of-week.

3) We propose an attribute-driven attention net-
work model to integrate the multiple feature compo-
nents, which characterize the spatial, temporal correla-
tions, and contextual information. The attention net-
work considers the heterogeneous influence of differ-
ent features and can dynamically assign weights to the
learned latent features based on specific situations.

4) Finally, we conduct extensive experiments to
evaluate the effectiveness of the proposed method using
real bus travel data involving 42 bus services, bus
line data, road networks of Singapore, and weather
condition data. The results clearly show that our
method significantly outperforms existing methods.

2 Preliminaries

Definition 2.1. (Road Network): We model a road
network as an undirected graph G = (R,E), where
each node in R indicates a road segment (splited by
junctions) and each edge in E indicates a connection

between two road segments such that there exists a link
(i, j) if road segment ri is connected to rj via a road
intersection. There are N = |R| road segments in total.

Definition 2.2. (h-hop Neighbour): A road segment
ri is called a h-hop neighbour of rj if the two road seg-
ments are connected via h intersections in the shortest
path between them. Direct neighbours are called 1-hop
neighbors.

Definition 2.3. (Bus Speed): Suppose there are K
time intervals in the time span of the historical dataset,
i.e., T ∈ RK . The matrix of the historical bus speeds
(e.g., 30 km/hour) is denoted as ŷ ∈ RN×K , and ŷn,k is
the bus travel speed on road segment rn at time interval
tk. 15 minutes is set as the length of the time interval
(i.e if tk is 8:00am-8:15am, then tk+1 is 8:15am-8:30am).
We use the vector ŷn ∈ RK to denote the sequence of
bus speeds of road segment rn over the entire time span.
In addition, we use y ∈ RN to denote the target vector
to be predicted.

Bus Speed Prediction: This problem aims to pre-
dict the bus travel speed at time interval t + h for any
road segment, i.e. given the historical bus travel speed
data until time interval t, we want to predict the bus
travel speed for h time intervals after t. We set h = 1
in our experiments. In addition to historical bus speed
records, we also incorporate temporal correlation, spa-
tial dependency across different road segments, contex-
tual features such as weather conditions (refer to Section
5.1 for more details).
Overview of the Proposed Method: The proposed
solution consists of two general steps. The first step is
feature extraction, as shown in Figure 1, which models
and captures spatial (local and global), temporal (short
and long term) correlations, and contextual information
(e.g. road characteristics and weather condition). Each
group of features is represented by a feature vector.
The second step performs model training and prediction
using deep learning. The input to the deep learning
based model is a sequence of feature vectors generated
from a historical record. The trained model is then used
to make predictions for a given road segment and time
interval.

3 Feature Extraction

3.1 Spatial Correlation Feature

3.1.1 Local-Spatial Correlation Intuitively, road
segments sharing similar traffic conditions (e.g. traf-
fic flow, congestions, etc.) are likely to have similar
bus travel speed patterns. For example, segments be-
longing to the same street usually have similar speed
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Figure 1: Overview of correlation feature extraction.

patterns especially during peak hours, where a large
number of people commute to work or home. Moti-
vated by the First Law of Geography [29] - “near things
are more related than distant things”, existing works
propose to utilize CNN (Convolutional Neural Network
[30]) and graph embedding (called structure2vec [14])
to capture the neighbourhood information of spatially
near regions. However, the CNN methods operate on
grid-structure network and employ the same convolu-
tion kernels to all roads for aggregating local neighbor-
hood information, while the existing graph embedding
techniques typically treat all the neighbours with equal
importance. It is evident that neighbours have vary-
ing levels of correlations with the target road segment,
and existing works also report that incorporating re-
gions with weak correlations to predict a target region
actually hurts the performance [34].

To address this issue, we develop a graph embedding
technique to extract neighbourhood information as a
feature vector, which will be fed to the prediction model,
based on the structure2vec method. For road segment
ri at time interval t, a feature vector of length H is
constructed as XS = (µi,t

1 , · · · , µ
i,t
H ), where

(3.1)

µi,t
h ← θ1 · ŷi,t + (1− θ1)

∑
ru∈N(ri)

θi,uµ
u,t
h−1, 2 ≤ h ≤ H

where N(ri) is the set of 1-hop neighbours of ri, ŷi,t
is the bus speed of ri at time t, θ1 and θi,u are hyper
parameters to control the weights of different terms, and
θi,u will be discussed later. Initially, µi,t

1 = ŷi,t.
The difference between our model and the

structure2vec method is that the latter assume that
all neighbours have equal impact to ri, thus there are no

parameters θi,u (ru ∈ N(ri)) in their model. However,
it has been demonstrated that different neighbours have
different degrees of influence [6]. In our graph embed-
ding model, the heterogeneity of neighbourhood influ-
ence is taken into consideration by introducing a sepa-
rate parameter θi,u for each neighbouring road segment.
The parameters θi,u (ru ∈ N(ri)) are estimated by cal-
culating the Pearson Correlation between road segment
ri and its 1-hop neighbors ru, i.e. N(ri).

3.1.2 Global-Spatial Correlation We developed a
method to take the global correlation into consideration
to improve the accuracy of the bus speed predictions.
We partition all roads into k clusters such that roads
of similar traffic patterns (in terms of bus speeds) are
grouped into the same cluster. We also use Pearson
Correlation score of bus speeds to estimate the similar-
ity between road segments, wi,j (ri, rj ∈ R). A given
road network G weighted by the Pearson Correlation
coefficients is partitioned into k disjoint clusters, i.e.
{G1, G2, . . . , Gk}. We define function w(Gi, Gj) as the
sum of similarity of all links having one endpoint in Gi

and the other endpoint in Gj ,

(3.2) w(Gi, Gj) =
∑

rp∈Gi,rq∈Gj

wp,q

For a given partition G = {G1, G2, . . . , Gk}, the cut of
a partition Gi is defined as the summation of similarity
values associated with all links having one endpoint
in Gi and the other endpoint in any partition other
than Gi, i.e. w(Gi, Gi). Similarly, the association of
a partition Gi is defined as the summation of similarity
values associated with all links having both of their
endpoints in Gi, i.e. w(Gi, Gi). We employ the k-way
α-Cut algorithm [7] to partition the given road graph
into k clusters, by minimizing the following objective
function.

(3.3) α−Cut(G) =
k∑

i=1

(α×w(Gi, Gi)

|Gi|
−(1−α)×w(Gi, Gi)

|Gi|
)

The objective function α−Cut(G) combines two terms,
where the first term minimizes the cut representing the
inter-partition similarity while the second term max-
imizes the association representing the intra-partition
similarity. The parameter α ∈ [0, 1] controls the weights
of the two terms.

We consider the global correlation as the criteria to
group similar road segments into clusters and train a
separate predictor for each cluster, instead of training a
single predictor for all road segments or one predictor
for each road segment. This strategy is more robust
(compared to training one predictor for all roads) as
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only road segments of similar patterns share the same
predictor. In addition, this also increases the training
examples which is important for training deep learning
based predictors. Moreover, this strategy is more
efficient as less predictors are needed (compared to
training a predictor for each road) and is able to scale
to large road networks by controlling the number of
clusters.

3.2 Temporal Correlation Feature

3.2.1 Short-term Historical Information We
consider two types of historical information: recent ob-
servations and historical trend.

For a road segment ri, the recent observations
consist of the bus speeds of previous lr time slots,
i.e. ro =< ŷi,t−lr, ŷi,t−lr+1, . . . , ŷi,t−1 >, where lr is
the number of recent observations utilized. Consid-
ering that bus travel speeds typically suffer from se-
vere fluctuations due to traffic congestions and delays
at intersections, we do not directly use ro as features
for the prediction model. Instead, the feature vector
xlr
i,t =< si,t−lr, si,t−lr+1, . . . , si,t−1 > is used for pre-

diction model training, where si,j is calculated as the

average of W speed observations, i.e. 1
W

∑W−1
k=0 ŷi,j−k,

where parameter W is set to 2 in our implementation.
For a road segment ri, we calculate the average

bus speed of all days at each time interval t of 15
mins (there are 72 intervals in total from 6:00 to
24:00), which produces a time series of 72 average
speeds. The obtained time series is then decomposed
into three components namely: the trend, season and
remainder using STL decomposition [12]. The obtained
trend sequence, dt, will be used for training predictors.
Similarly, we obtain an average speed sequence with a
period of one week, where each value in the sequence is
calculated as the average speed at the time interval of
the week (there are 7×72 intervals in a week). A weekly
trend sequence wt is obtained by decomposing the
weekly average speed sequence. For a road segment ri
at time t, we build a feature vector xtr

i,t =< dti,t, wti,t >,
where dti,t is the value in ri’s daily trend at time t
and wti,t is the value in ri’s weekly trend at time t,
respectively.

Then we integrate the two feature vectors xlr
i,t and

xtr
i,t and concatenate them to form the feature vector

XH
i,t to represent the historical information.

3.2.2 Long-term Temporal Periodicity Traffic
speed typically repeats periodically [5], meaning that
the traffic speed at a certain period is similar to the
same time period of the previous day or previous week.
Thus we incorporate the periodicity information of a

road segment at the time interval to improve predic-
tion accuracy. Also due to the severe fluctuation in bus
travel speed, we use historical average speeds which is
more reliable. As such, for a road segment ri, the pe-
riodicity information is constructed as a feature vector
XP

i,t =< y0i,t, y
1
i,t, . . . , y

7
i,t >, where y0i,t is the average

speed of road ri at time interval t of all days, and yji,t
(1 ≤ j ≤ 7) is the average speed of ri at time interval t
of all the j-th day of a week.

3.3 Contextual Features

3.3.1 Road Network Characteristics A feature
vector XR is constructed to capture the road charac-
teristics of a road segment. It includes the length of the
road segment, road type (e.g. primary road, second pri-
mary road, highway), number of lanes, number of bus
stops on the road segment, number of traffic lights (e.g.
0, 1, or 2).

3.3.2 Extrinsic Factors Traffic speed can be af-
fected by many complex extrinsic factors, such as
weather condition and activity event. In order to pro-
vide more opportunity for identifying specific traffic sit-
uations, we augment each training sample with addi-
tional extrinsic features. Let XE

i,t be the feature vector
that represents these extrinsic factors at predicted time
interval t. In this work, we mainly incorporate weather
condition (one-hot encoding), holidays (yes: 1, no: 0),
time interval t and the day-of-week. This is because, 1)
vehicles typically travel at a slower speed during heavy
rains, 2) holiday events significantly affect the traffic
flow which indirectly affects bus travel speed, 3) the
congestion level changes with the time of the day, and
hence bus travel speed is correlated with the time inter-
val t, and 4) week day and weekend exhibit significant
differences in their traffic patterns.

4 Prediction Model

4.1 Overview of the Network Structure Figure
2 shows the structure of our deep learning based predic-
tion model, which consists of four major components,
i.e. input layer, hybrid layer, attention layer, prediction
layer. The input-layer component consists of all the fea-
tures discussed in Section 3, i.e. XV

i,t∪XS
i,t∪XH

i,t∪XP
i,t∪

XE
i,t∪XR

i,t, where XV
i,t contains the speed of ri at time t,

i.e. ŷi,t. In the hybrid-layer component, XR
i,t is fed into

a fully connected neural network (FNN) because it con-
tains only static features, while other terms (XV

i,t, XS
i,t,

XH
i,t, XP

i,t and XE
i,t) share the same network structure

with a Long Short-Term Memory (LSTM) network [19].
The output of hybrid-layer component, i.e. the learned
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latent representations of the extracted feature vectors,
are fed into the attention-layer component to calculate
the importance (weights) of different features based on
specific situation. Then the weights as well as the latent
feature representations serve as inputs to the prediction-
layer component to make predictions.

hV hRhV hWhV hPhV hS hV hH

XS XH XP XW XR

LSTM0

XV

FNN1LSTM1 LSTM2 LSTM3 LSTM4

Attention 

Layer
f(z)

PredictionhV hX y
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Prediction 
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a1 a2 a3 a4 a5

Figure 2: Structure of the prediction model.

4.2 LSTM Layers We use the LSTM network to
learning the hidden temporal dependency among the
features. The architecture of the LSTM cell can be
described with the following equations:

itt = σ(Wixxtt + Wihhtt−1 + bi)

ftt = σ(Wfxxtt + Wfhhtt−1 + bf )

ott = σ(Woxxtt + Wohhtt−1 + bo)

C̃tt = tanh(WCxxtt + WChhtt−1 + bC)

Ctt = itt ∗ C̃tt + ftt ∗Ctt−1

htt = ott ∗ tanh(Ctt)

(4.4)

where tt stands for the tt-th time interval, itt, ftt, ott

refer to the output of the input gate, forget gate and
output gate respectively. xtt, ctt, htt are the input
vector, state vector and hidden vector respectively,

and htt−1 is the former output of htt. C̃tt and Ctt

are the input state and output state of the memory
cell, and Ctt−1 is the former state of Ctt. σ is a
sigmoid function. Wix,Wfx,Wox,WCx are the weight
matrices connecting xtt to the three gates and the cell
input, Wih,Wfh,Woh,WCh are the weight matrices
connecting xtt−1 to the three gates and the cell input,
bi, bf , bo, bC are the bias terms of the three gates and
the cell gate.

4.3 FNN Layers We use fully-connected neural net-
work (FNN) layers in both hybrid-layer and prediction-
layer component.
In Hybrid-Layer: The features of road characteristics
XR

i,t, which are static, are fed into FNN layers to learn

high-order interactions, as follows.

(4.5)
z1R = relu(W1

R(XR
i,t) + b1

R)

zjR = relu(Wj
R(zj−1R ) + bj

R) 1 < j ≤ L

where zjR is the output of the j-th layer and L is the

number of FNN layers, Wj
R (W1

R) is the weight matrix

connecting neurons in j-th (1-st) layer and zj−1R (XR
i,t),

bj
R is the bias terms for the j-th FNN layer.

In Prediction-Layer: similar to (5), the FNN makes
prediction based on the output of the attention layer,
i.e. hV

tt ⊕ hx
tt,

(4.6)
z1P = relu(W1

P (hV
tt ⊕ hx

tt) + b1
P )

zjP = σ(Wj
P (zj−1P ) + bj

P ) 1 < j ≤ L′

where⊕ is the concentration operation, L′ is the number
of FNN layers, σ is sigmoid function.

4.4 Attention Layer The feature vectors discussed
in Section 3 do not contribute equally to the bus speed
prediction especially under specific traffic situations.
For example, road characteristics (e.g. road type)
should be given more attention to road segments that
are located in light or non-congested areas, instead
of the features that are used to characterize traffic
congestions. In our model, the attention mechanism [32]
is employed to discriminate the importance of different
feature components automatically. The key idea is to
assign weights to different feature components, where
the weights ajtt are parameters learned by the model.
Formally, the final fused feature is calculated as

(4.7) hx
tt =

∑
j

ajtt · (hV
tt ⊕ hj

tt)

where hj
tt is the output of LSTM/FNN (i.e. the learned

latent representation) for term Xj (j ∈ {S,H, P,R,E}),
tt is the time-step of training procedure, ajtt is the weight
for (hV

tt ⊕ hj
tt), and

∑
ajtt = 1. The weight parameter

ajtt is learned through the attention layer,

(4.8) zjtt = VT
ajrelu(Waj(h

V
tt ⊕ hj

tt) + baj)

(4.9) ajtt =
exp(zjtt)∑
j exp(z

j
tt)

where Waj is weight matrices connecting neurons in

attention layer and the input hV
tt ⊕ hj

tt, VT
aj connect

neurons in attention layer with zjtt, baj is the bias terms.
Loss Function. The following loss function contains
two terms: mean square error and square of mean ab-
solute percentage error. The former pays more attention
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to predictions of large values while minimizing the lat-
ter can prevent the training from being dominated by
large value samples. λ is a hyperparameter to control
the weights of different terms.

(4.10) Lloss =

F∑
i=1

(‖ ŷi − yi ‖2 +λ ‖ ŷi − yi
ŷi

‖2)

The algorithm Adam is utilized for optimization. The
training process repeats for 50 epochs. To prevent
overfitting, the dropout mechanism is applied to each
hidden layer, where the rate of dropout is set to 0.5.

5 Results and Analysis

5.1 Experimental Settings Datasets. (1) Road
network data: We use a subset of Singapore road net-
work covered by a rectangle area (Southwest: 1.3346,
103.6757; Northeast: 1.3572, 103.7092), comprised of
703 road segments. It is used to derive topological at-
tributes of the road segments, including the information
of types of road segments (e.g. primary, secondary, res-
idential), number of lanes, whether the ends of the road
segment are associated with traffic signals, and if there
is a bus stop along the road segment (1 if yes).
(2) Bus line data. The bus route information includes
the ID and the GPS location of each bus stop in
sequential order. We map the bus routes to the road
network to find out the road segments covered by the
bus lines. The results are verified by comparing with
Google Map via visualization. Based on the map-
matched bus line routes, the number of intersections and
the number of traffic signals on any road segment can be
calculated. 42 bus services are used in the experiment.
(3) Bus speed data: The bus speed data is calculated
based on historical bus trajectories, obtained from Land
Transport Authority, Singapore. The granularity of the
trajectories is one point per minute, each point contains
the GPS location of the bus and the corresponding
timestamp. A bus speed dataset is calculated with the
time span from May 06 to July 07, 2017. The data of
last two weeks is used for testing while the remaining
data is used for training. In addition to the speed values,
the time related features including the time-of-day and
day-of-week of the speed record are also extracted.
(4) Weather data: Weather condition influences the bus
travel speed by affecting the bus stopping time at bus
stops as well as the moving speed of vehicles. Hourly-
grained weather data are collected during the same time
period of the bus speed data.

5.2 Baseline Methods We compare our method
with several baseline methods that can be adapted to
prediction problem with graph data structures, includ-

ing: (1) ARIMA (Auto Regression Integrated Moving
Average) [9]: It makes predictions solely based on his-
torical data. (2) LR (Linear Regression): LR is utilized
to model the relationship between bus speed and all the
impact factors/features. (3) SVR (Support Vector Re-
gression) [3]: It is a variant of Support Vector Machine
that is used for classification. (4) LSTM (Long Short-
Term Memory) [26]: A 3-layer LSTM network with relu
activation is used to estimate the traffic speed for each
cluster. The size of hidden layers is fixed as 128. (5)
FMSTA [8]: FMSTA is a low-rank tensor decompo-
sition based method which incorporates various prop-
erties in spatiotemporal data for forecasting real-world
problems. (6) DL-STF [17]: DL-STF is a RNN based
method which solves the wind speed prediction problem
using spatiotemporal information. It models spatiotem-
poral information with graph structure and forecasts the
wind speed of all nodes (stations) at the same time.

In our implementation, the number of FNN layers L
and L′ (in hybrid-layer and prediction-layer component)
are set to 3 where each layer has 12 neurons. Each of
the LSTM layers in the hybrid-layer component contains
3 layers where each layer has 12 neurons. In this
way, the total number of parameters in our model is
almost the same as the baseline LSTM. In the graph
embedding to extract the local-correlation features, H
is set to be 5, θ1 are empirically selected to maximize
the performance for each cluster. In α-cut algorithm, α
is set to 0.5 and there are 15 clusters in total. In the
experiments, a separate model is trained for each road
segment for ARIMA and SVR, as this achieves better
results than training one predictor for each cluster. For
other baselines, one model is trained for each cluster.

Table 1: Comparison of results on MAE, MAPE and
RMSE.

Methods MAE (km/h) MAPE (%) RMSE (km/h)
ARIMA 3.308 21.2 4.333

LR 3.352 22.2 4.808
SVR 2.789 18.9 3.830

LSTM 3.219 21.1 4.216
FMSTA 4.801 23.3 6.533
DL-STF 3.198 20.8 4.152
Proposed 2.061 14.8 3.380

5.3 Results The performance measures used are the
Mean Absolute Error (MAE), the Mean Absolute Per-
centage Error (MAPE), and Root Mean Square Er-
ror (RMSE). Table 1 shows that the proposed method
achieves the best performance. This is because the pro-
posed method not only extracted sufficient features that
can capture the spatial, temporal correlations and con-
textual information, but it also takes into account the
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heterogeneous influence of the multiple feature vectors
using the attention network. The major reason that
the baseline methods fail to obtain good predictions is
that they are sensitive to the severe fluctuations in bus
speed values due to the frequent stopping of buses dur-
ing congestions, and at bus stops or traffic signals. For
example, ARIMA could not produce promising results
because it is sensitive to anomalies and the predictions
will become unreliable if there is a huge difference in
speed values between two consecutive time steps. In
the problem considered in this paper, the fluctuations
of bus speeds behave similarly to anomalies thus leading
to poor prediction results. Although the baselines FM-
STA and DL-STF also consider spatiotemporal infor-
mation, they do not sufficiently capture the local/global
spatial correlation and short/long-term temporal corre-
lation, which is important for bus speed prediction due
to the severe fluctuations. They also do not take into
account the heterogeneous influence of different feature
components. Even considered temporal correlation and
contextual information including road network charac-
teristics and weather condition, the baseline LSTM also
does not obtain promising results, since it does not con-
sider sufficient spatial correlation and the dynamic im-
portance of different feature components. Among all the
baselines, SVR shows the best performance, but it re-
quires a separate predictor for each road segment which
is impractical. In addition, it takes the longest training
time for all the road segments.
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Figure 3: (a) Effect of the extracted features, (b) Effect
of the attention mechanism.

Effect of Extracted Features. Figure 3 (a) shows
the effectiveness of different feature components. It
shows the average results over all clusters and the
results on cluster 1, 4, 7, 10 and 13 where all the

clusters are ordered based on cluster size. It can
be observed that the worst performance is obtained
when using only speed value, i.e. XV . On the other
hand, when all feature vectors are taken into account,
i.e. feature combination All, the best performance
is achieved. Moreover, each feature component has
different influence strength over different clusters. For
example, XP shows a strong impact on the prediction
accuracy for clusters 1, 4 and 10 compared to other
clusters (i.e. 7 and 13), as lower prediction errors
are obtained by the feature combination of XV + XP .
XR typically is less important than other features for
cluster 4 and 10, but has a higher impact on clusters
7 and 13. This clearly reinforces our hypothesis to
improve prediction accuracy with an adaptive attention
mechanism that dynamically assigns weights to different
feature components.
Effect of Attention Mechanism. Figure 3 (b)
demonstrates the effect of attention mechanism which
could capture dynamic importance of each feature com-
ponents, by comparing the results using and without
using attention mechanism. It can be observed that the
attention mechanism obtains large improvements over
most clusters but almost no improvement over cluster
3, 10 and 13. The range of improvements also varies sig-
nificantly across clusters. This is reasonable as different
clusters are associated with different situations based on
specific roadway characteristics and extrinsic factors.
Prediction Time. The experiments are tested on In-
tel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz with 32G
RAM. Even though the training time of the predic-
tion model is longer, the prediction can be efficiently
achieved. During the testing phase, the prediction time
for 2000 records is as follows: ARIMA 0.028s, LR 0.020s,
SVR 0.021s, LSTM 0.024s, FMSTA 0.170s, DL-STF
0.024s, and our method 0.027s.

6 Related Works

6.1 Models of Traffic Speed Prediction Existing
methodologies on traffic speed prediction can be typ-
ically divided into two categories, i.e. parametric ap-
proach and non-parametric approach [2]. Parametric
methods include the ARIMA [5] and its variations, the
Kalman filter (KF) [21], Bayesian network models [16],
and hidden Markov model (HMM) [31, 33]. Paramet-
ric approaches rely on predetermined models based on
certain theoretical assumptions, in which model param-
eters are calculated and calibrated with recent observa-
tion data. These methods typically focus on predict-
ing short or long term future traffic and most of them
rely on an assumption that the state of current traffic
is available. Parametric approaches are often inefficient
for a large scale transportation system or for long-term
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vehicle speed prediction [22,26].
Many recent non-parametric approaches for traffic

speed prediction are based on machine learning (ML)
technique, such as linear regression (LR) [27], support
vector regression (SVR) [3], random forest [18] and
neural network (NN) based approaches [11, 25]. A
literature review [24] on short-term traffic forecasting
showed that researchers have shifted their focus from the
classical methods (parametric approach and classical
ML methods such as LR) to neural network based
approaches (e.g. Look-up convolution recurrent neural
network [25]) due to the explosive increase in data
accessibility and computing power. Moreover, the
above-mentioned methods are often used in a hybrid
manner. For example, the KF method is combined with
the NN methods in [23], and fuzzy inference systems
are often combined with NN (i.e. fuzzy-neural networks
[10,28]).

6.2 Features for Traffic Speed Prediction In ad-
dition to incorporating as many extrinsic factors as pos-
sible (e.g. weather condition), many studies have fo-
cused on capturing spatiotemporal information for the
traffic prediction problems. Even though some para-
metric approaches consider spatiotemporal correlation
in their models, e.g. HMM [33], the spatiotemporal cor-
relation is mainly investigated by deep learning (DL)
based methods. Traffic speed of a road segment has
inherent temporal patterns (e.g. Repeatability and Sim-
ilarity [5]) and this can be naturally taken care by
LSTM [26]. A deep stacked bidirectional and unidi-
rectional LSTM network architecture [13] is proposed
that considers both forward and backward dependen-
cies in traffic speed series. The work in [11] proposed
a convolutional neural network (CNN), named PCNN,
to model the intricate natures of temporal features, in-
cluding periodicity, local coherence, etc., for short-term
traffic prediction. Attention mechanism was integrated
into deep learning models [36,38] for time series predic-
tion problem to capture various importance of different
spatial neighbors. However, the above-mentioned meth-
ods do not take spatial dependency into consideration.

CNN based methods have been applied to deal with
grid-based crowd flow prediction [35] and traffic speed
prediction for ring road [30], by aggregating correlated
neighborhood information (nearby road segments or re-
gions) using CNN technique to improve the predictive
accuracy. However, their approach is targeted at grid
networks or ring road networks where each road segment
has a fixed number of upstream and downstream road
segments. Graph embedding [14] is another technique
to capture local-spatial correlations by aggregating the
neighborhood information of spatially nearby regions,

while graph convolution [15] is a spectral approach that
ensures strictly localized filter and exhibits low com-
putational complexity. The above-mentioned methods,
i.e. CNN, graph convolution and graph embedding, are
efficient for capturing local-spatial correlations but do
not pay enough attention to the global correlations (e.g.
highly correlated road segments that are spatially dis-
connected).

7 Conclusions

This paper investigates the problem of predicting bus
travel speed on urban road networks, which is a chal-
lenging task because bus travel speed is affected by nu-
merous factors (such as congestions, delays at intersec-
tions and bus stops). We proposed to jointly incorporate
multiple correlation features into the prediction model
to improve prediction accuracy. We developed meth-
ods to extract features for capturing local-spatial cor-
relation, global-spatial correlation, recent and distant
historical information, temporal periodicity, as well as
contextual information such as road network character-
istics and other extrinsic factors. Using a combination of
these features, we proposed a DL based approach with
attention mechanism to dynamically control the weight
parameters (importance) of different feature compo-
nents. The experimental results demonstrated that the
proposed approach significantly outperforms the base-
line approaches.
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