
Lowering Dynamic Power of a Stream-based CNN
Hardware Accelerator

Duvindu Piyasena∗, Rukshan Wickramasinghe†, Debdeep Paul‡, Siew-Kei Lam§ and Meiqing Wu¶
∗,†,§, ¶Nanyang Technological University, Singapore

‡Indian Institute of Technology, Patna
{∗gpiyasena, §assklam,¶meiqingwu}@ntu.edu.sg, †wmr.rukshan@gmail.com, ‡debdeep.ee15@iitp.ac.in

Abstract—Custom hardware accelerators of Convolutional
Neural Networks (CNN) provide a promising solution to meet
real-time constraints for a wide range of applications on low-cost
embedded devices. In this work, we aim to lower the dynamic
power of a stream-based CNN hardware accelerator by reducing
the computational redundancies in the CNN layers. In particular,
we investigate the redundancies due to the downsampling effect
of max pooling layers which are prevalent in state-of-the-
art CNNs, and propose an approximation method to reduce
the overall computations. The experimental results show that
the proposed method leads to lower dynamic power without
sacrificing accuracy.

Index Terms—CNN, FPGA acclerator, low-power designs

Convolutional Neural Networks (CNNs) are finding its way
into a wide range of embedded applications such as image
classification [1], object detection [2], semantic segmentation
[3], etc. The use of CNNs in embedded devices must meet
multiple conflicting design constraints such as performance,
power consumption and cost. Custom hardware implementa-
tions (such as implementations on Field Programmable Gate
Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs)) offer good opportunities to meet these constraints
compared to their software counterparts (CPUs or GPUs).

It has been shown that a major bottleneck in existing CNN
architectures lies in the memory accesses to transfer feature
maps and weights between the external memory and process-
ing engine [4]. A stream based CNN hardware accelerator
[5] offers the advantage of high throughput processing and
avoids the need for using external memory for storing the
intermediate feature maps. The intermediate feature maps are
streamed from one layer to another in a pipeline manner using
internal row buffers.

The elimination of external memory accesses in a fully
stream based CNN architecture leads to faster execution time,
but incur significant computational resources as all the CNN
layers are executed concurrently. This leads to high dynamic
power dissipation due to the intensive computations. In par-
ticular, the convolution layers account for the majority of
computations in a typical CNN (over 90%) [6], and hence it
has the highest impact on the power consumption. This work
aims to reduce the dynamic power consumption of a stream
based CNN architecture by removing the computational redun-
dancies in the convolutional layers due to the downsampling
effect of the max pooling operations. Max pooling is found in
most state-of-the-art CNNs and is used to downsample feature

maps by selecting the maximum activation in a neighborhood
and discarding the rest. This incurs high computational re-
dundancies in the convolution operations that compute the
activations which are eventually discarded in max pooling.

We propose to remove these redundancies by predicting
the feature map candidates in the neighbourhood that will
result in maximum activation prior to performing convolu-
tion. The prediction is achieved with simple approximations.
The actual convolution operation is only performed on these
candidates. This eliminates the computational redundancies at
the convolution layers, by avoiding convolutions that result
in activations which would eventually be discarded by max
pooling. We introduce a methodology that is able to derive
suitable approximations for different CNN models by analyz-
ing the distribution of the weights. Using the proposed method,
we show that significant number of redundant convolution
operations can be avoided in various CNN models. We also
integrated the proposed approximation in a stream based CNN
architecture that is generated by Haddoc2 [5]. FPGA power
analysis results show that the proposed scheme leads to 33%
reduction in dynamic power while preserving the original
accuracy.

I. RELATED WORK

A. Streaming Hardware Architectures

A common technique to implement CNNs on FPGAs is to
design a uniform accelerator that is time-shared to perform
sequential layer-by-layer processing [7], [8]. However, this
approach produces large intermediate data between layers that
requires off-chip memory storage. This leads to high off-chip
memory accesses and the runtime of CNNs being constrained
by the off-chip memory access bandwidth. The latency and
throughput degradations will violate the real time requirements
of CNNs . High off-chip memory accesses also consume high
power [9], leading to lower energy efficiency. Additionally,
using a uniform accelerator with fixed configuration to process
all layers lead to resource under-utilization as different layers
have varying inputs, outputs and feature map dimensions.

Streaming CNN accelerators built upon dataflow processing
paradigm, have been presented in [10]–[18] to address the
above-mentioned issues. The underlying premise of stream-
based accelerators is to maximize on-chip memory usage and
eliminate/reduce the off-chip memory accesses in order to
alleviate performance and energy bottlenecks of the time-

shared implementations. Some of the key features associated
with most stream-based accelerators are:

• Inter-layer parallelism, with pipelined processing of mul-
tiple/all layers on-chip. Each layer starts processing once
sufficient data is available. Hence, intermediate data stor-
age requirements can be significantly reduced.

• Use of on-chip buffers to stream data between layer.
• Multiple heterogeneous accelerator units, each optimized

for a particular layer configuration for resource utilization
efficiency.

However, the implementation of stream based accelerators is
challenging due to on-chip resource and memory constraints.
These challenges have been addressed by previous work via
various techniques.

The work in [16], [17] maps multiple heterogeneous convo-
lution layers, to parallel heterogeneous units. In [10], a given
CNN is partitioned to sub dataflow graphs, with seperate bit-
streams functioning via reconfiguration. These approaches are
optimized for high throughput than latency.

In latency driven approaches, streaming accelerators are
developed using multiple layer fusion [14], [15], and changing
tile granularity [13], with single/multiple FPGA approaches.
In [11], quantized CNNs (QNN), are implemented as fully
unrolled streamed accelerator. Recently FPGA clusters are
used to deploy fully unrolled designs hardened for layer
configurations [12]. In addition to the above-mentioned FPGA
based approaches, the work in [18] demonstrated an ASIC
multi-die realization of stream-based acceleration.

The above-mentioned work have demonstrated that stream-
ing CNN accelerator offers the potential for achieving high
throughput and runtime performance compared to the uniform
accelerator approach. One key driving factor that will enable
stream-based processing of CNNs will be the continuous
growth of on-chip memory and compute power in FPGAs.
For instance, Xilinx Ultrascale+, the latest generation of Xilinx
FPGAs are equipped with a new on-chip memory, Ultraram,
resulting in 6x increase in on-chip storage capacity (enabling
up to 500Mb on-chip storage) than the previous generation
[19]. Our work aims to reduce the power consumption of
streaming CNN accelerators by reducing the convolution op-
erations, which accounts for majority of power dissipation.

B. CNN Hardware Optimization

Optimizing compute efficiency of CNN accelerators is an
actively researched area. Existing work can be broadly classi-
fied as follows.

1) Reducing Precision: Bitwidth quantization is an actively
explored area in CNNs to remove overheads associated with
full precision arithmetic. It has been shown that CNNs are
resilient to fixed point forms with linear quantization [20],
logarthmic quantization [21] and even extreme forms such as
binarization [22]. Alternatively, encoding schemes too have
been proposed [23]. These approaches allow efficient com-
putations/storage in CNN hardware accelerators compared to
floating point implementations.

2) Network Pruning: Network pruning is another popular
technique to reduce the redundant operations in CNNs. The
objective is to compress the network, by sparsifying network
connectivity [24], [25] or by structured pruning to eliminate
structures such as filters/channels/layers, altogether [26].

3) Approximate Computing: Approximate Computing is an
emerging area to approximate computations via low-precision
forms to gain performance benefits [27], [28]. The work in [27]
replaces less critical neuron computations via approximated
forms, while [28] extends this to reduce memory accesses.
However using approximations to replace computations leads
to accumulation of errors causing accuracy degradations in
larger networks.

Our work employs lightweight approximations to predict
redundant convolution computations so that they can be elim-
inated. This enabled us to achieve significant computational
savings while maintaining original accuracy without the need
to retrain the network. Similar approach has been taken in
[29], [30] to eliminate convolution redundancies caused by
max-pooling. However, these work have been demonstrated
only on smaller datasets like MNIST and CIFAR10. We have
evaluated our method on much larger datasets like Imagenet,
which consists of 1000 object classes for classification.

II. PROPOSED METHODOLOGY

The proposed method relies on simple approximations to de-
termine the convolution candidates that will result in maximum
activation in a pooling neighborhood. These approximations
are derived from the weight distribution of the CNN. In this
section, we describe the proposed methodology for determin-
ing the approximation scheme for a given trained CNN model.
A. CNN Layers

CNNs typically consists of a series of convolutional
(CONV) and Pooling layers, followed by several Fully Con-
nected (FC) layers at the final stages. CONV layers extract
features hierarchically in the form of feature maps by convolv-
ing the input feature maps with two-dimensional pre-trained
filters. Activation functions (eg : ReLU, TanH) are used to
introduce non-linearity to CONV feature maps. The POOL
layers are used for representative feature selection and down-
sampling feature map representations to reduce computational
complexity. There are two types of POOL layers: average
pooling (AVG) and max-pooling (MAX).

The Max Pool operation in particular performs a neighbor-
hood operation on CONV feature maps, where the maximum
activation of each neighborhood is propagated while the rest
of activations is discarded, making the computation effort
incurred for the discarded activations redundant. The objective
of this work is to eliminate this redundancy to gain power
savings in hardware.

The following parameters are used to describe the configu-
rations of CNN layers:

• Ni : Number of input feature maps(IFM) in the layer
• No : Number of output feature maps(OFM) in the layer
• Nr : Number of rows in the input feature map
• Nc : Number of cols in the input feature map

• Kc : Dimension of Convolution kernel
• Sc : Stride of Convolution Kernel
• Kp : Dimension of Pool Kernel
• Sp : Stride of Pool Kernel

B. Redundancy Definition

The objective of the proposed work is eliminate the compute
redundancy occuring as a result of the max-pool operation
explained above. The following equations characterize the
redundancy of CONV activations and hence the FLOPS
(multiplications and addition operations), caused due to Max
Pool, in a given CONV-MAX layer arrangement.

Max Pool IFM dimension (Nconv) = Nr×N c

Max Pool OFM dimension (Npool) = (Nr×N c) / S2
p

FLOPS per each IFM activation = 2 ×Nr×N c ×K2
c ×N i

FLOPS discarded/Layer =
2 ×Nr×N c ×K2

c ×(1− 1/S2
p) ×N i ×No

Redundancy (%) = (Nconv-Npool)/Nconv = (1 - 1/S2
p)

For this, we have assumed the Input Feature map dimensions
of Max Pool and CONV layers are equal (i.e. Sc = 1). To
evaluate this redundancy, we used several popular CNN
models, Lenet [31], Cifar10-Quick [32], Cifar10-Full [31],
Cifar10-NiN [33], Alexnet-BN [34] and VGG16 [6]. The
redundancy in CONV-MAX layers reaches upto 75%, for
layers with Sp = 2, which is a common configuration seen
across models. Table I, indicates the evaluated redundancy, in
which row 6, indicates the redundancy of each CONV-MAX
layer as a percentage of total computations.
C. Approximation Method

The proposed method aims to eliminate computational re-
dundancies occuring due to Max Pool effect explained above,
to obtain power and energy savings in hardware. We propose
a lightweight approximation method, that predicts the required
CONV activations prior to actual computation, hence avoid-
ing the redundant computations. The approximation scheme
predicts the CONV neighborhoods which produce Max Pool
candidates, and the CONV operations are performed only for
the predicted neighborhoods. This is illustrated in Fig. 1. In the
rest of the paper, we refer to this approximation scheme for
CONV operations as ’ApproxConv’ and the neighborhoods
predicted by the approximations as ‘Max Pool Candidate
Neighborhoods (MPCNs)’.

CONV
Max
Pool

Approx
Conv

CONV

Fig. 1: Conventional method vs Proposed method

−0.2 −0.1 0.0 0.1 0.2 0.3
Weights Value

0

100

200

300

Co
un

t

W99

(a) Weight distribution

−0.15−0.10−0.05 0.00 0.05 0.10 0.15
Weights Value

0

2500

5000

7500

10000

12500

15000

Co
un

t

(b) ApproxConv weights
Fig. 2: ApproxConv weights quantization in VGG16 2nd layer

To achieve the objective of power gains via this method,
the ApproxConv operation must be a low complexity im-
plementation, such that the power benefits obtained by this
removing redundant CONV operations are not outweighed by
the ApproxConv overhead. Hence this work propose Approx-
Conv to approximate CONV operations using original weights
quantized to power-of-two values. This allows ApproxConv
to use low cost Bit-shifters to approximate multiplication
operation in hardware. Additionally this work investigates
the most compact power-of-2 representations for ApproxConv
weights via a static analysis across each layer in a given model,
to further simplify the ApproxConv units, and maximise power
gains. This static analysis of mapping original weights to
ApproxConv weights is explained in the next subsection.
D. Convolution Weights Approximation

In a typical CONV layer the weights are distributed between
-1 and +1, as shown in Fig. 2a. Hence the weights of
ApproxConv can be represented by power-of-2 quantization
levels, ±1/2n where n ∈ Z≥ 0. To arrive at the most compact
number of levels per each layer, we perform a static analysis
on the trained model, using the validation dataset. An iterative
search is performed to identify the optimal level count with
accuracy loss under 0.5%. The steps in this analysis are,

1) The number of power-of-2 levels (NL) of all layers are
initially set to 4.

2) In each layer, the original weights are clipped at 99th

percentile to remove outliers. The closest power-of-two
value to this clipping point is chosen as the Maximum
quantization level. In a given layer, we define this point
as ‘W99’, with the exponent as ‘m’.

3) Hence, given NL and m, quantization levels for Ap-
proxConv weights are set to 0, ±1/2m, ±1/2m+1,,
±1/2m+NL−1.

4) Each weight is mapped to the nearest power-of-2 level
defined in the above step

5) The modified design is tested in Caffe for accuracy using
validation image set

6) Steps 2-5 are repeated for all the combinations of NL
across layers.

After repeating steps 2-5, the optimal configuration with the
accuracy drop under 0.5% is chosen as the optimal weights
mapping for ApproxConv. Then the exponents of levels are
packed as ApproxConv weights. In a given layer the maximum
bitwidth of ApproxConv weights is log2(NL + 1).

TABLE I: Computation Redundancy caused by Max Pool in popular CNN models
Lenet-5 Cifar10-quick [?] Cifar10-full [?] NiN VGG16 BN-AlexNet

Conv-Max1 Conv-Max2 Conv-Max1 Conv-Max1 Conv-Max1 Conv-Max1 Conv-Max2 Conv-Max3 Conv-Max4 Conv-Max5 Conv-Max1 Conv-Max2 Conv-Max3
CONV activations/Layer 11,520 3,200 32,768 32,768 98,304 3,211,264 1,605,632 802,816 401,408 100,352 290,400 186,624 43,264
FLOPS/Layer 576,000 3,200,000 4,915,200 4,915,200 31,457,280 3,699,376,128 3,699,376,128 3,699,376,128 3,699,376,128 924,844,032 210,830,400 895,795,200 299,040,768
FLOPs Discarded/layer 432,000 2,400,000 3,686,400 3,686,400 23,592,960 2,774,532,096 2,774,532,096 2,774,532,096 2,774,532,096 693,633,024 160,022,016 688,128,000 235,339,776
Discarded FLOPS
(% by Layer)) 11.44% 63.56% 75.00% 75.00% 75.00% 17.65% 17.65% 17.65% 17.65% 4.41% 11.38% 48.95% 16.74%

Fig. 2, shows the weights distribution of 2nd CONV layer
of VGG16, where dotted lines represent the weights of Ap-
proxConv weights and red dotted lines represent W99 at the
iteration when NL = 3. In this scenario the ApproxConv
weights are mapped to {0, ±0.03125, ±0.0625, ±0.125}, as
indicated in Fig. 2b.

III. HARDWARE ARCHITECTURE

This section contains the implementation details of the
hardware architecture of the above discussed approximation
method. The implementation is based on the Haddoc2 [5],
an open source tool capable of generating FPGA based CNN
accelerators automatically, from a Caffe model.

A. Baseline Design

The baseline hardware generated from Haddoc2 is a
dataflow graph with streamed processing computations carried
out in 8-bit integer precision. The weights are hardcoded, to
allow Synthesis optimizations to multipliers.

A single convolution layer in Haddoc2 is indicated in Fig.
3a.The important modules in the Haddoc2 are,

• Neighborhood Extractor : The neighborhood extractor
buffers the incoming pixels in the row buffers and outputs
convolution neighborhoods at every clock cycle. Row
buffers are Nr in length and are implemented as registers.

• Dot Product Unit : Each Dot Product unit corresponds
to a CONV operation of an OFM. It is a loop unrolled
hardware unit with Kc*Kc*Ni number of parallel multi-
pliers followed by an adder tree containing same number
of adders. Hence it takes an input tensor of dimension
Kc*Kc*Ni and outputs a convoluted pixel. A convolution
layer contains No parallel dot product units.

• Max Pool :
The Max Pooling unit is implemented as a combination
of vertical and horizontal max pool units which performs
max pooling across vertical and horizontal dimensions
respectively. The vertical pool unit buffers inputs from
Kp-1 rows and outputs the vertical maximums. These
vertical maximums are fed into horizontal pooling unit,
which buffers the previous Kp-1 inputs and outputs the
horizontal maximums.

• Activation : ReLU was added to Haddoc2, which per-
forms a simple sign based multiplexing operation.

The hardware generated by Haddoc2 for the original net-
work configuration in Caffe, was used as the baseline design
for our comparisons.

Approx	
CONV

Approx	
POOL

Neighborhood
Buffer

CONV	
neighborhoods

MPCN
neighborhood

To	CONV
layer

Fig. 4: Approximator Unit
B. Modified design

The modified design, contains additional units namely the
Approximator Units and neighborhood buffer as indicated in
Fig. 3b.

The Approximator units performs the ApproxConv opera-
tion and selects the MPCNs for which Dot Product units per-
form CONV operations. Thus the Approximator units precedes
the dot product units in hardware. The subcomponents of the
Approximation unit are as follows,

• ApproxConv : The ApproxConv unit is similar in struc-
ture to Dot Product unit with several differences to make
it lightweight. The multiplications are replaced by bit-
shift operations due to proposed power-of-two quantized
weights. Since the weights are hardcoded, the bit-shifters
are further optimized to bit-concatenations during syn-
thesis. Additionally using compact power-of-two weights
results in low-cost adders compared to the original Dot
Product units.

• Approx Pool : The Approx Pool performs the max pool-
ing on the ApproxConv outputs. The output selections
are used to drive the neighborhood multiplexer at the
output stage to produce MPCNs, to be produced for actual
CONV operation.

The internals of the Approximator unit is shown in Fig. 4.
The neighborhood buffer, delays CONV neighborhood in-

puts to dot product units, to synchronize with the outputs of
Approx Pool selections mentioned above. The neighborhood
buffer can buffer neighborhoods of Ni number of IFMs. For
each IFM, neighborhood buffer outputs the CONV neighbor-
hoods of a given Max-Pool neighborhood parallely, which
are fed to the neighborhood multiplexer. The neighborhood
multiplexer selects the MPCN, from the input neighborhoods
based on the Approx Pool outputs.

The Dot Product units are clock gated in the design,
such that the reduced activity leads to reduction of power
dissipation. Since the operation of the Approximator units are
pipelined and overlapped with other processing the perfor-
mance is not significantly impacted. Thus the proposed design
leads to significant energy gains following the power gains
observed.

Neighbourhood
Extractor

Max	Pool

Max	Pool

Max	Pool

No	
OFM

Kc*Kc*Ni

Dot
Product

Dot
Product

Dot
Product

(a) Baseline Hardware Architecture (single layer)

Dot
Product

Approximator
Unit

Neighbourhood
Extractor

Neighborhood	Buffer

No	

OFM

(Kc+Kp-1)2	*	Ni

Kc*Kc*Ni

Dot
Product

Approximator
Unit

Approximator
Unit

Dot
Product

(b) Modified Hardware Architecture (single layer)
Fig. 3: Hardware Architectures of baseline and modified designs (single layer)

IV. EXPERIMENTAL RESULTS

This section contains experimental results of the accuracy
evaluation and the hardware synthesis of the proposed method.

A. Accuracy Evaluation

The accuracy of the proposed method was evaluated on
image classification datasets for CNNs mentioned in Section
II, using Caffe [35]. Top-1/Top-5 accuracies on the validation
image set were used as metrics for accuracy evaluation.

We perform an iterative search by varying the number of
power-of-two levels for ApproxConv weights according to
the steps outlined in section II D. The mapping which gives
the least number of levels, with accuracy loss under 0.5%
is chosen as the optimal weights mapping for ApproxConv.
Table II, summarizes the final weights mapping results and
accuracies across the tested models. The 4th column, contain
the level counts of ApproxConv weights.

Apart from comparing accuracy with original models, we
also compared our method with the method proposed in [29].
The method in [29], uses sign of weights to approximate
CONV operation and is hence identified as SignConnect. For
comparison, we applied SignConnect, to the same networks,
and the accuracies are reported in Table II. The results indicate
that SignConnect, gives mixed results, with significant losses
in accuracy for AlexNet-BN, Cifar10-Full. Comparatively, our
method arrives at low-complex complex approximations, for
all the reported models, with accuracy drop under 0.5%.
Hence the proposed scheme, is a better method to approximate
CONV operations for Max Pool predictions.
B. Hardware Evaluation

The baseline and the modified designs were implemented
using VHDL by extending Haddoc2. Fully Connected Layers
were excluded from the implementations, as the focus of this
work is on CONV layers, which accounts to the majority
of computations. The designs were synthesized at 100MHz
clock frequency, using Vivado 2018.2 targeting Virtex Ultra-
Scale+ VCU1525 Acceleration Development Board (xcvu9p-
fsgd2104-2L-e).

The dynamic power consumption was measured from the
synthesized designs using switching activity generated from
post-synthesis simulations, run on Modelsim 10.6C. The
power consumption was measured for MNIST samples cover-
ing all digits and average power figures are reported.

TABLE III: Hardware Evaluation Results
Baseline Modified Change (%)

Dynamic Power (W) 1.919 1.289 -32.83%

Resource LUT 431752 814558 88.66%
FF 156178 317096 103.03%

Latency (ns) 7980 8010 0.38%
Energy/Image (J) 1.53E-05 1.03E-05 -32.58%

Clock Signals Logic Total
Networks

0.0

0.5

1.0

1.5

2.0

D
yn

am
ic
 P
ow

er
 (
W
)

Baseline Design
Modified Design

Fig. 5: Dynamic Power Consumption Breakdown

Table III, reports the power and utilization figures of the
baseline and modified designs. The power analysis results in
Table III shows that there is dynamic power improvement of
32.83% in the modified design with approximation. Addition-
ally, due to the overlapped processing of the approximation
operations, the latency increase is marginal. Hence the en-
ergy/image is improved by 32.58%, in the modified design.

However, this benefit comes at the expense of 88.66%
increase in LUT and 103.03% increase in FF resource con-
sumption than the baseline design. The increase in LUT
resources is mainly due to the neighborhood multiplexing units
explained in section III.B. The FF count increases as a result
of the neighborhood buffers.

The breakdown of dynamic power consumption is shown in
Fig. 5. Although the clock power has increased in the modified
design as a result of increase in FF, the logic and signal powers
have reduced by considerable margins, owing to the reduction
of redundant CONV operations, through approximations.

V. CONCLUSIONS

This work presented a method to lower dynamic power of a
streaming based CNN hardware accelerator. This is achieved
by exploiting run-time redundancies in the convolution layers
that is due to the Max Pooling operations. The experimental
results shown that significant dynamic power reduction of
33% can be achieved with the proposed method, while not
sacrificing on the accuracy. Potential future work includes
evaluating proposed method on larger CNN implementations
and investigating methods to lower the increase in resource
usage in the proposed hardware design.

TABLE II: Accuracy Evaluation

Network Baseline Sign Connect Proposed Method
Accuracy (Top-1/5) Nl (By Layer) Power-of-2 Levels (By Layer) Accuracy (Top-1/5)

VGG16 68.15/88.14 67.99/87.78

3
2
2
2

0.0625, 0.125, 0.250
0.031250, 0.0625
0.015625, 0.03125
0.015625, 0.03125

68.02/88.09

AlexNet-BN 56.57/ 79.92 21.13/40.60
4
2
3

0.03125, 0.0625, 0.125, 0.25
0.03125, 0.0625

0.015625, 0.03125, 0.0625
56.11/79.37

Cifar10-Quick 72.19/97.70 70.88/97.81 1 0.125 71.87/97.69
Cifar10-Full 81.66/99.12 74.53/98.53 2 0.125, 0.25 81.42/99.07
Cifar10-NiN 89.57/99.62 89.43/99.62 2 0.25, 0.5 89.49/99.62

Lenet 99.01/99.99 99.05/99.99 2
1

0.5, 0.25
0.125 99.05/100

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Research
Foundation Singapore under its Campus for Research Ex-
cellence and Technological Enterprise (CREATE) Programme
with the Technical University of Munich at TUMCREATE.

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec 2015.
[Online]. Available: https://doi.org/10.1007/s11263-015-0816-y

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, June 2017.

[3] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640–651, April 2017.

[4] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in 2013
IEEE 31st International Conference on Computer Design (ICCD), Oct
2013, pp. 13–19.

[5] K. Abdelouahab, M. Pelcat, J. Srot, C. Bourrasset, and F. Berry, “Tactics
to directly map cnn graphs on embedded fpgas,” IEEE Embedded
Systems Letters, vol. 9, no. 4, pp. 113–116, Dec 2017.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[7] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded fpga
platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.
[Online]. Available: http://doi.acm.org/10.1145/2847263.2847265

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
02 2015, pp. 161–170.

[9] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[10] S. I. Venieris and C. Bouganis, “fpgaconvnet: A framework for mapping
convolutional neural networks on fpgas,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 40–47.

[11] C. Baskin, N. Liss, E. Zheltonozhskii, A. M. Bronstein, and A. Mendel-
son, “Streaming architecture for large-scale quantized neural networks
on an fpga-based dataflow platform,” in 2018 IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW), May
2018, pp. 162–169.

[12] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, Mar
2018.

[13] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “Tgpa:
Tile-grained pipeline architecture for low latency cnn inference,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2018, pp. 1–8.

[14] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[15] Q. Xiao, Y. Liang, L. Lu, and S. Y. and, “Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on
fpgas,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2017, pp. 1–6.

[16] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” in 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA), June
2017, pp. 535–547.

[17] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli
Wang, “A high performance fpga-based accelerator for large-scale
convolutional neural networks,” in 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), Aug 2016, pp.
1–9.

[18] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec 2014, pp. 609–622.

[19] Ultraram: Breakthrough embedded memory integration on
ultrascale+ devices. [Online]. Available: https://www.xilinx.com/
support/documentation/white$ $papers/wp477-ultraram.pdf

[20] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approxi-
mation of convolutional neural networks,” CoRR, vol. abs/1604.03168,
2016. [Online]. Available: http://arxiv.org/abs/1604.03168

[21] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “Lognet:
Energy-efficient neural networks using logarithmic computation,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), March 2017, pp. 5900–5904.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp.
525–542.

[23] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[24] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretzky,
Ed. Morgan-Kaufmann, 1990, pp. 598–605. [Online]. Available:
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

[25] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural network,” in
Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 1135–1143. [Online].
Available: http://papers.nips.cc/paper/5784-learning-both-weights-and-
connections-for-efficient-neural-network.pdf

[26] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” CoRR, vol. abs/1608.03665, 2016.
[Online]. Available: http://arxiv.org/abs/1608.03665

[27] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), Aug 2014, pp. 27–32.

[28] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2015, pp. 701–706.

[29] T. Ujiie, M. Hiromoto, and T. Sato, “Approximated prediction strat-
egy for reducing power consumption of convolutional neural network
processor,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), June 2016, pp. 870–876.

[30] M. Ahmadi, S. Vakili, J. M. P. Langlois, and W. Gross, “Power reduction
in cnn pooling layers with a preliminary partial computation strategy,”
in 2018 16th IEEE International New Circuits and Systems Conference
(NEWCAS), June 2018, pp. 125–129.

[31] Lenet, caffe example. [Online]. Available: https://github.com/BVLC/
caffe/tree/master/examples/mnist

[32] Cifar10 example networks. [Online]. Available: https://github.com/
BVLC/caffe/tree/master/examples/cifar10

[33] Network in network, cifar10. [Online]. Available: https://gist.github.
com/mavenlin/e56253735ef32c3c296d

[34] Caffe, “Alexnet-bn, caffe,” Feb. 2018. [Online]. Available: https:
//github.com/HolmesShuan/AlexNet-BN-Caffemodel-on-ImageNet

[35] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

