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Abstract.
Pedestrian trajectory prediction is essential for

collision avoidance in autonomous driving and robot
navigation. However, predicting a pedestrian’s tra-
jectory in crowded environments is non-trivial as it
is influenced by other pedestrians’ motion and static
structures that are present in the scene. Such human-
human and human-space interactions lead to non-
linearities in the trajectories. In this paper, we
present a new spatio-temporal graph based Long
Short-Term Memory (LSTM) network for predict-
ing pedestrian trajectory in crowded environments,
which takes into account the interaction with static
(physical objects) and dynamic (other pedestrians)
elements in the scene. Our results are based on two
widely-used datasets to demonstrate that the pro-
posed method outperforms the state-of-the-art ap-
proaches in human trajectory prediction. In particu-
lar, our method leads to a reduction in Average Dis-
placement Error (ADE) and Final Displacement Er-
ror (FDE) of up to 55% and 61% respectively over
state-of-the-art approaches.

1. Introduction

The provision to estimate future trajectories of
pedestrians and predicting the possibility of colli-
sions can prevent accidents in autonomous driving
and robot navigation. However, pedestrian trajectory
prediction in crowded environments is a challenging
task as human navigation decisions are influenced by
their interactions with other traffic participants and
the static physical objects. In particular, humans nav-
igate in a situation-aware manner by avoiding colli-
sions with static objects and other pedestrians in the
space surrounding them, based on common social

Figure 1: Estimating pedestrian trajectory given the
surrounding environment physical structure in a real-
life scenario. In the figure above, a lamp post lies
in the direction of traversal of the pedestrian of in-
terest. Thus it is essential to capture the existence of
static obstacle and understand how they will navigate
around it.

rules. As such, prediction models must take into ac-
count the interactions of both static and dynamic ele-
ments in the environment in order to accurately pre-
dict the pedestrians’ motion paths. Figure 1 shows a
real scenario that requires awareness of the lamp post
presence in order to make realistic prediction about
the pedestrian trajectory who will avoid walking into
paths leading to the obstacles area.

Previous works that addressed human motion
prediction focused on modeling human-human and
human-space interaction separately. [1, 2, 3, 4, 5] ac-
count for scene static configuration such as obstacles
and scene structures for improving human trajectory
predictions in the presence of dynamic objects. How-
ever, these works mainly target constrained environ-
ments with low crowd density.

DOI: 10.3217/978-3-85125-652-9-01

4



Recently, the work in [6] presented a deep con-
volutional network that models the impact of scene
static elements on the pedestrian motion. However,
they relied on complex tools comprising convolu-
tion layers and multiple feature maps for modeling
knowledge about the scene. Recurrent neural net-
works in [7, 8, 9] tackled pedestrian trajectory pre-
diction on challenging datasets of outdoor scenes
[10]. Nevertheless, these approaches only modeled
the social interaction among pedestrians without tak-
ing into account the surrounding static context. So-
cial Attention [7] encapsulated the social interactions
along the spatial and temporal domains by adopting
spatio-temporal graph architecture. Their model con-
sidered the social interaction as a global event occur-
ring between each and every pedestrian using their
velocity to state their influence on each other. In con-
trast, Social LSTM [8] only accounted for the influ-
ences within a fixed-size local neighborhood.

In our work, we propose an enhancement to the
models in [7, 11] and improve the modeling of mul-
tiple trajectories correlations over space-time dimen-
sions using the 2D locations of the the static and dy-
namic elements. In particular, the proposed model
overcomes the limitation of Social LSTM [8] which
only accounted for the influence of other pedestrians
within a local neighborhood, while at the same time
being cognizant of the static obstacles at close prox-
imity. This concern was not present in Social Atten-
tion [7]. Our intuition for this model is that while
a pedestrian’s trajectory can be affected by the dy-
namic motions of other pedestrians at a distance, the
decision to avoid static objects is usually made when
the pedestrian is close to the object. Thus, we man-
age to reduce the graph complexity and achieve more
stable predictions by dynamically incorporating the
static elements in the graph structure only when they
potentially pose an impact on pedestrian trajectory.

Our main contributions are as follows: (1) we
present a spatio-temporal graph that explicitly cap-
tures the global interaction of all the pedestrians in
the scene and the local interaction with the static
objects, and (2) we propose a new spatio-temporal
attention mechanism for each pedestrian trajectory.
This mechanism takes into account the local inter-
action among pedestrians and objects. Our spatio-
temporal mechanism is inspired by the work of [12]
which casts the attention methods [13] for sequence
learning tasks on graphs. Experimental results
on two widely-used datasets demonstrate that our

method achieves significant quantitative and qualita-
tive improvements over state-of-the-art methods for
pedestrian trajectory prediction.

2. Related Work

In this section, we present a summary of research
on pedestrians trajectory prediction. The literature
branches into two main trends regarding context in-
clusion: local context and global context. Addi-
tionally, the existing works unfolds into two other
branches in terms of distinguishing multiple objects
influence: attention-based and uniformly-based ap-
proaches.

Local context Versus Global context. It is ob-
vious from the previous introduction that the modern
trajectory prediction approaches [14, 15, 8, 3, 16, 17]
resorted to a limited spatial extent of the surrounding
context as they observed the interactions occurring
within short distance from the pedestrian included,
while [7, 9] were globally-based as they considered
all the pedestrians in the scene even those who are far
away from each other.

According to local context methods, observing the
interaction for a short duration once pedestrians are
close enough to each other, gives limited understand-
ing of the social interaction. While including the
social interactions on a global scene scale, enables
the model to better understand how the interaction
evolves between a pair of pedestrians based on the
velocity effect that the model inherently grasps upon
capturing the change in the spatial distances along
time.

Attention-based Versus Uniformly-based ap-
proaches. Pedestrians navigating in urban environ-
ments influence each other and very often are influ-
enced by the obstacles around them, thus it is essen-
tial for predicting multiple pedestrians trajectories to
recognize the importance of various sources impact
on a pedestrian and pay attention to the more influ-
ential ones. Applying attention in sequence learn-
ing tasks has proved its effectiveness in the overall
algorithm performance and in pedestrian trajectory
prediction methods it helped drawing more plausible
trajectories.

The variational encoder-decoder methods, such
as, Social GAN [9] took the global neighborhood
around pedestrian but it evaluates all pedestrians in a
uniform manner, by assigning equal importance val-
ues to them. Existing RNN approaches [7] applied
soft attention mechanism to assign different impor-
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tance weights to multiple pedestrians based on their
velocities. While [16] applied hard attention to as-
sign weights based on pedestrians distance, they also
introduced additional soft attention to evaluate the in-
teraction salience in a scene region. So, their trajec-
tory prediction drew conclusions about which region
was more likely for a pedestrian to navigate through.
In our work, we are rather interested in microscopic
prediction of the interaction between pedestrians and
a specific fixed obstacle, hence, we use the soft at-
tention mechanism [12] to evaluate the social inter-
actions only.

Graph-Structured Networks. Real-life applica-
tions generate complicated forms of information in
which they are best represented through graph struc-
tures compared to other rigid hierarchical and end-
to-end organizations. Variational Encoder-Decoder
methods[9, 18, 19], have the advantage of generat-
ing a variety of results, however, they are not ca-
pable of providing a factorized and explicit high-
level representation of the environment components.
Graph Neural Network [20] advanced the applica-
tion of graph-structured data in neural networks in
environments that naturally contain highly interre-
lated behaviors, such as: social media, molecular bi-
ology, etc. Outdoor pedestrians navigation typically
induces a spatio-temporal nature due to alterations
that happen in pedestrian motion trajectory and the
complex interactions with different objects. There-
fore, modeling a rich interactive context requires a
scalable graph-based structuring of the elements and
factorize their relationships in a principled way. Neu-
ral relational networks [14, 15], attempted to predict
the interactions among multiple moving object using
physical motion semantics, however, they did not ac-
count for realistic scenarios such as urban environ-
ments, which makes these networks better fitting for
object linear motion in free space.

Recurrent Neural Networks. Recently, Recur-
rent Neural Networks (RNN) have shown notable
success in modeling data sequences and time-varying
patterns. They organize in a recursively unfolded
structure, which makes them a perfect choice for
temporal analysis and sequence learning tasks, such
as machine translation and human motion forecasting
[21, 22, 23, 24, 25]. Tree-structured RNN [24], il-
lustrated spatio-temporal network organization anal-
ogous to [11]. However, their spatio-temporal archi-
tecture was designed around a skeletal-based human
activity prediction such that, all the units had fixed

dependencies and belong to one cohesive movement.
This prior assumption does not fit with highly dy-
namic contexts such as crowd motion.

Few models [11, 26, 27] structured RNN units
based on graph topology that explicitly represented
elements and their interactions semantics. In our
paper, we extend the generic spatio-temporal graph
used in [11] in a hybrid manner, by combin-
ing globally-based human-human interaction with
locality-based human-space interaction, in addition
to using attention mechanism to distinctively model
social interactions.

3. Approach

3.1. Problem Definition

Given a set of static objects O, and a set of pedes-
trians V and their trajectories Xt

vi observed at time-
steps t = 1,...,Tobs, our model predicts the future lo-
cations X̂t

vi at t = Tobs +1, ...., Tpred time-steps, with
regards to potential influence of any obstacles pre-
sented in the scene, such that Tobs = 8, vi ∈ V , Tpred
= 12.

3.2. Model Architecture

The spatio-temporal graph is a dynamic struc-
ture that evolves temporally and spatially, due to
the motion state of the pedestrians and changes in
the scene (e.g. as the elements in the scene in-
crease/decrease). Figure 2 shows the corresponding
representation of crowd subjects in spatio-temporal
graphs G = (V ,ΣS ,ΣT ), comprising three key
components: nodes set V ∗, spatial edges set ΣS and
temporal edges set ΣT , where nodes represent the
dynamic and the static element (e.g. pedestrians and
static objects), spatial edges represent the relation-
ship between two nodes to indicate the interaction
between them. Temporal edges link the same pedes-
trian node over successive time-steps and thus con-
nect the graph when it is unrolled over time.

Figure 2a illustrates the dynamic structure with an
arbitrary crowd at two consecutive time-steps. At
(t=1), there are four pedestrians. At (t=2), a new
pedestrian (5) enters the scene. Notice that by (t=2),
pedestrian (2) enters the vicinity of the red obstacle,
where they appear to pass through the dashed circular
boundary. Figure 2b shows the corresponding spatio-
temporal graph representation, which evolves dy-
namically over the spatial and temporal domain. This
is evident when the graph unfolds at (t=2), where
a new node is introduced for pedestrian (5) and all
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pedestrian nodes are connected by undirected edges
to model the mutual interaction. This creates 2(N-1)
spatial edges between pedestrian nodes at every time-
step, where N is the number of pedestrians. In con-
trast, only a single directed edge is pointing from the
obstacle node to the corresponding pedestrian node
to depict the influence posed by the static obstacle on
pedestrian (2).

The components of graph G are replaced with the
corresponding LSTM components, temporal edgeL-
STM, spatial edgeLSTM, nodeLSTM. The relation-
ship between two nodes is characterized by their rel-
ative coordinates, where xv2v3 is the spatial distance
between nodes v2 and v3, and xv2v2 is location of
node v that changes over time.

Eq. (1) defines spatial edgeLSTM embedding
function φ that takes as input: xtv2., all the relative
spatial distances between node xv2 and its neighbors
(e.g. including xv2v3), embedding weight matrix Ws

.

etv2. = φ(xtv2.;Ws) (1)

The spatial edgeLSTMs take the embedded input
feature along with previous spatial hidden states from
all related nodes ht−1

v2. and transform them using nor-
mally initialized weight matrix W lstm

s . The output
hidden states vector htv2. is shown in Eq. (2).

htv2. = LSTM(ht−1
v2. , e

t
v2.,W

lstm
s ) (2)

Eq. (3) defines temporal edgeLSTM embedding
function φ that takes as input: the temporal location
of pedestrian node xtv2v2 , embedding weight matrix
Wt.

etv2v2 = φ(xtv2v2 ;Wt) (3)

Eq. (4) defines the LSTM cell and its inputs: pre-
vious temporal hidden state ht−1

v2v2 , embedded input
feature etv2v2 from Eq. (3) and normally initialized
weight matrix W lstm

t for transforming these inputs
into the current hidden state htv2v2 .

htv2v2 = LSTM(ht−1
v2v2 , e

t
v2v2 ,W

lstm
t ) (4)

3.3. Spatio-Temporal Attention Module

Given the success of attentional mechanisms in
sequence-based prediction of natural language pro-
cessing applications, this work adopts the concept of

(a) Crowded environment displayed over 2 time-steps.
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(b) Crowd mapping to abstract spatio-temporal graph
unrolled through two time-steps

Figure 2: Crowd mapping to Spatio-temporal Graph.
(a) A static obstacle is drawn as red rectangle sur-
rounded by a virtual circle which indicates its neigh-
borhood boundaries. (b) The Blue nodes represent
pedestrians 1,2,3,4,5 and the red dashed node repre-
sents obstacle o such that o ∈ O. Directed down-
ward lines indicate temporal edges linking the same
node over time-steps and undirected lines are two-
way spatial edges connecting pedestrian nodes. A di-
rected edge is pointing from Obstacle node to pedes-
trian node to indicate obstacle influence on pedes-
trian. For the sake of clarity, we use dashed links
from node (5) to indicate the remaining spatial edges.
(Best viewed in color).

attention-based generative algorithms [13]. We pro-
pose a variation of Multi-Head method, a soft atten-
tion based on two simple operations, i.e. concatena-
tion and averaging across all edge feature vectors for
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Figure 3: Multi-node attention mechanism pipeline for pedestrian node v2 at time-step t = 2. On the left-most
side, it shows nodes set V ∗ = {V ,O}. The black dashed vectors store ht+1

v2. , the hidden states of the spatial
edges related to node v2. The red dashed vector stores ht+1

v2o , the hidden state of spatial edge between node
v2 and obstacle o. The blue dashed vector stores ht+1

v2v2, temporal edge hidden state of node v2. These hidden
states are then passed into PReLU and Softmax (S) activations to generate new embeddings ê. The concrete
blue vectors store spatial hidden states êt+1

v2. and temporal hidden state êt+1
v2v2 . Multiplying the new embeddings

vector by their hidden states array results in attention coefficients vectors a, where at+1
v2. is the spatial attention

coefficients vector and at+1
v2v2 is the temporal attention coefficients vector.

each node. In [13], the input comprises fixed number
of words with fixed positions, and the Multi-Head
attention works by stacking multiple attention lay-
ers (heads) in which each layer makes mappings be-
tween words in two sentences. We use a simple at-
tention mechanism, i.e. Multi-Node attention, which
only has a single layer that jointly pays attention to
the features from spatial and temporal domains and
store the attention coefficients into single vector for
node v2 trajectory at each time-step. To illustrate
this, Figure 3 exemplifies attention on pedestrian (2)
and its neighbors at time (t=2). Neighboring edgeL-
STMs states are transformed before concatenation us-
ing the embedding function in Eq. (5) and Eq. (6),
which is a composite of Parametric ReLU and soft-
max. This combined activation ensures that hidden
states remain within a small range of [-1,1] which
will be mapped once again at the sampling stage to a
range of normalized outputs range of [0,1].

êtv2. = softmax(PReLU(htv2.)) (5)

êtv2v2 = softmax(PReLU(htv2v2)) (6)

The Parametric ReLU as illustrated in Eq (7), is
the generalized ReLU function as it ties the leak pa-
rameter α as a network learnable parameter. Employ-
ing such activation function with an adaptive leak pa-

rameters, allows a slightly different span of the neg-
ative hidden states along training batches. This has
proved its benefit for the model prediction perfor-
mance.

PReLU(h) = max(0, h) + α ∗min(0, h); (7)

α = 0.2

The product of embedding vectors ê with the orig-
inal hidden states results in attention weights (also
called coefficients). Eq. (8) and Eq. (9) shows the
spatial attention coefficients atv2. and temporal atten-
tion coefficients atv2v2 , respectively.

atv2. = êtv2.h
t
v2. (8)

atv2v2 = êtv2v2h
t
v2v2 (9)

Eventually, these coefficients will be concatenated
and averaged to generate the final weighted hidden
states vector Hv2

t as shown by Eq. (10):

H t
v2 =

∑N
v (atv2v2 ||atv2.)

N
; N = | atv2v2 || atv2. |

(10)
Comparing the Multi-Head attention with the

single head multiplicative attention (scaled dot-
Product), it turns out that the scaled dot-Product
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gives a compact representation of all incoming hid-
den states and it serves a similar objective to the
linear pooling mechanism in [8] due to the highly
variable-sized environment. However, it diminishes
the expressive power lost upon compressing feature
vectors size.

While Multi-Head attention averages across the
spatial and temporal attention coefficients without
compressing their depth. Hence, we realized that re-
taining the vectors depth provides sufficient feature
representation for learning the influence of pedestri-
ans on each other.

The pedestrian location coordinates xtv2 are passed
through an embedding layer φ as in Eq. (11) before
its taken as input into nodeLSTM:

etv2 = φ(xtv2 ;Wembed) (11)

Finally, the output vector Hv2
t is concatenated

with previous hidden state ht−1
v2 , and which are then

passed to nodeLSTM v2, along with transformation
weight matrix W lstm to generate current hidden
state htv2 .

htv2 = LSTM(etv2 , concat(h
t−1
v2 ,Hv2

t, etv2),W lstm)
(12)

The future location of pedestrian is sampled from
a bivariate normal distribution N as in Eq. (14). For
estimating the Mean µ, variance σ and correlation ρ
we apply a linear transformation layer in Eq. (13)
Wout to transform htv2 into the estimated parameters.

(µt+1
v2 , σt+1

v2 , ρt+1
v2 ) = Wouth

t
v2 (13)

(xt+1
v2 , yt+1

v2 ) ∼ N (µt+1
v2 , σt+1

v2 , ρt+1
v2 ) (14)

4. Experimental Results

4.1. Datasets and Metrics

Our evaluation is based on two widely-used
datasets, ETH Walking Pedestrians (EWAP) [28],
UCY Students and Zara [29]. In total, the datasets
consist of five videos taken from outdoor surveil-
lance cameras. The datasets contain 2206 human
trajectories, exhibiting different traits that range be-
tween straight linear and curvilinear motion splines.
From our observations, ETH scenes consist of more
straight trajectories with few social interactions as
the video captures people motion at the university

entrance, while UCY scenes display more scenar-
ios pertaining to human-space interactions. For ex-
ample, the UCY-ZARA datasets include pedestrians
bending at the shop entrance, while UCY-University
scenes have more social interactions among standing
groups. Furthermore, these cases in particular, in-
crease the unpredictability of an individual path un-
less social and spatial contexts are taken into account.
In our experiments, two benchmark metrics are used,
i.e. Averaged Displacement Error (ADE) and Final
Displacement Error (FDE) of the TrajNet challenge
[10], for measuring Euclidean deviations (in meters)
between predicted trajectory and actual trajectory.

Averaged Displacement Error: The mean average
l2 distances between predicted trajectory coordinates
(x̂, ŷ) and true trajectory (x, y) for all time-steps i =
(1, .., n) over N pedestrian trajectories in the scene.

ADE =

∑N
j=1

∑n
i=1

√
(x̂j

i−xj
i )

2+(ŷji−yji )
2

n

N
(15)

Final Displacement Error: The average l2 dis-
tance between the final predict step (x̂n, ŷn) and the
true step (xn, yn) over j pedestrians trajectory, where
j = (1, ..., N).

FDE =

∑N
j=1

√
(x̂jn − xjn)2 + (ŷjn − yjn)2

N
(16)

4.2. Ablation Study

We have performed an ablation study by drop-
ping the scaled-dot attention module from Social
Attention and restoring back original settings of
Structural-RNN, to study the usefulness of dot-
Product attention model. The comparison between
the quantitative results of both baselines with our
method, shows that the scaled dot-Product perfor-
mance is lower than the Multi-Node mechanism per-
formance for the 5 datasets in Table 1. On the other
hand, the optimal choice of the human-obstacle con-
nectivity threshold λ = 0.5 parameter, was deter-
mined empirically, based on the objective of lower-
ing the Euclidean errors for both evaluation metrics.

4.3. Training Setup

We accumulated trajectory data for every pedes-
trian with skip rate = 10 frames to avoid overfit-
ting the minimal changes in pedestrian trajectory.
Each LSTM cell is of 256 depth. We transform data
into normalized interpolated pixel coordinates within
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range [0,1]. In batch processing, we fixate the batch
size batch size = 24, observation length Tobs = 8
time-steps (3.2 seconds), prediction length Tpred =
12 time-steps (4.8 seconds) and epochs epoch num
= 100. After several hyper-parameter tunings, learn-
ing rate is set as lr = 0.001 and optimizer algorithm
is Adam. Activation function in attention layer is
Parametric ReLU, initialized to negative slope α =
0.20 and fractionally degraded throughout the train-
ing process. The training objective is to minimize the
negative log-likelihood loss of the i th trajectory from
time-step Tobs+1 to Tpred:

Li = −
Tpred∑

t=Tobs+1

log(P (xti, y
t
i |σti , µti, ρti)) (17)

4.4. Quantitative Results

As illustrated in Table 1, we set up experiments
to evaluate our proposed models, H-H and H-H-O,
which stand for Human-Human and Human-Human-
Obstacle respectively. The table has two segments,
the first 4 rows evaluate our model with graph-
based baselines: Social Attention and Structural-
RNN, while the next 3 rows evaluate our model
with state-of-the-art models: Social-LSTM and So-
cial GAN (SGAN). Our attention mechanism for
graphs improved prediction for human-human in-
teraction and human-obstacle interaction over the
other graph-based baselines: Social Attention and
Structural-RNN. This is observed from the average
errors under column (AVG) in Table 1. Compar-
ing H-H-O with Social Attention, H-H-O achieves
55% in the average of ADE and 61% in the aver-
age of FDE in all datasets. As Social GAN and
Social-LSTM display the best trajectories produced
by their models, we extracted the average of mini-
mum errors pertaining only to the best predicted tra-
jectories in H-H-O model. It can be observed that
the minimum FDE is considerably lower than min-
imum FDE generated by SGAN model and Social
LSTM, due to our model awareness of surrounding
context. This has made predictions to be plausi-
ble and compliant with the environmental constraint.
The Social GAN work shows several versions of their
model, so we selected their best model version which
is SGAN-20V for our comparison. The most signif-
icant improvement is realized when comparing our
model with Social GAN model, under the Hotel set
with 93% reduction in FDE. Furthermore, the Ho-
tel scene contains more static elements such as trees

and lamp posts as indicated in Figure 2. The sec-
ond best improvement is realized when comparing
our model with Social-LSTM model under the ETH
set with 89% reduction in FDE. The ETH dataset
consists of a set of tightly coupled trajectories due
to the crowd at the university entrance. This is a
busy contextual point where pedestrians are mostly
concerned about avoiding collisions with each others
at the entrance site. Additionally, our model perfor-
mance yields 69% reduction on FDE metric in Ucy-
University, which proves that embedding informa-
tion about physical structure of the scene and busy
interaction points, refines the model understanding of
pedestrian navigation in crowded sites and reduced
the prediction errors in FDE, as our model was more
capable of predicting the final step on a pedestrian
trajectory. From the previous table, it is noticeable
that the ADE and FDE exhibit small discrepancies
due to the accumulative nature in prediction errors.
If the predicted path was entirely approximate to the
ground-truth, the final predicted point will not have
large error, but if the prediction was increasingly de-
viating along the ground-truth, this can impact the
final point errors. This supports our quantitative re-
sults as being consistent and realistic.

4.5. Qualitative Results

In this section, we qualitatively evaluate model
predictions in Hotel and ZARA sets. Figure 4 dis-
plays predicted paths from our models. We have
spotted interesting cases for pedestrian moving near
static objects, and compared both of our models
outputs, Social Attention and Social LSTM with
ground-truth trajectory. Notice the Human-Human
model prediction for pedestrian walking near the
bench in Figure 4a. The ground-truth shows that
pedestrian is avoiding the bench, while Human-
Human model spline achieves lower displacement
than the baseline splines, those fail at evading the
bench area. This case is correctly predicted in our
Human-Human-Obstacle model as illustrated in Fig-
ure 4b. Additionally, Figure 4d shows that Social
Attention and Social LSTM predicts plausible paths
that pedestrian might have chosen, however, it is
not compliant with pedestrian surrounding objects.
Thus, with the aid of obstacle awareness, our model
understands pattern of collision avoidance with any
static subject in their way.

Figure 4c plots trajectories from H-H-O model
where pedestrians are bending toward the shop en-
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Table 1: Prediction errors ADE/FDE (in meters). Our results are averaged over 30 sampled sequences of
12-steps length for every set under our method. For baselines errors, Social Attention results are obtained
upon re-training their model, while Structural-RNN results are obtained upon manual implementation of their
architecture in PyTorch.

Method ETH HOTEL ZARA1 ZARA2 UNIV AVG

Structural-RNN 2.72/4.60 0.85/1.35 1.05/2.20 1.60/3.50 1.45/3.00 1.53/2.93
Social Attention 3.60/4.70 0.79/1.44 1.30/2.66 0.95/2.05 1.00/2.14 1.53/3.52
H-H 1.19/2.00 0.39/0.96 0.55/1.56 0.58/1.50 0.74/1.89 0.69/1.58
H-H-O 1.24/2.35 0.48/0.80 0.51/1.15 0.56/1.13 0.69/1.45 0.70/1.38

Social LSTM 1.09/2.35 0.79/1.76 0.47/1.00 0.56/1.17 0.67/1.40 0.72/1.54
SGAN-20V 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26 0.58/1.18
Minimum H-H-O 0.96/0.16 0.35/0.11 0.57/0.30 0.58/0.33 0.53/0.38 0.60/0.26

trance, and our model generates splines that approx-
imate the curvy ground-truth trajectory, as the model
learns the motion pattern at the entrance point.

In some situations, the predictions do not per-
fectly match the ground-truth path, although the de-
viations are quite small. This situation also applies
for the baseline models. Upon extensive visual com-
parisons for all frames in all datasets, we confirmed
that the erroneous results and deviations of the pro-
posed method are much fewer than those found in
the baselines plots. Quantitatively, Euclidean devi-
ations at the path endings have been reduced by up
to 61%, which identifies the improvements that we
highlighted earlier.

5. Conclusion

In this paper we have presented a new spatio-
temporal graph that operates on the local and global
contexts around pedestrian, for predicting their tra-
jectory in outdoor environments. For an accurate
modeling of human-human interactions and human-
space interactions, we employ a simplified version of
Multi-Head attention mechanism for accumulating
the influence from spatial and temporal subspaces.
Our attention mechanism consistently demonstrated
improved prediction results over baseline methods,
for groups as well as individual non-linear trajecto-
ries.

References

[1] H. Kretzschmar, M. Kuderer, and W. Bur-
gard, “Learning to predict trajectories of co-
operatively navigating agents,” in Robotics and

Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 4015–4020.
1

[2] H. S. Koppula and A. Saxena, “Anticipating
human activities using object affordances for
reactive robotic response,” IEEE transactions
on pattern analysis and machine intelligence,
vol. 38, no. 1, pp. 14–29, 2016. 1

[3] F. Bartoli, G. Lisanti, L. Ballan, and
A. Del Bimbo, “Context-aware trajectory
prediction,” arXiv preprint arXiv:1705.02503,
2017. 1, 2

[4] D. Ellis, E. Sommerlade, and I. Reid, “Mod-
elling pedestrian trajectory patterns with gaus-
sian processes,” in Computer Vision Workshops
(ICCV Workshops), 2009 IEEE 12th Interna-
tional Conference on. IEEE, 2009, pp. 1229–
1234. 1

[5] K. Kim, D. Lee, and I. Essa, “Gaussian process
regression flow for analysis of motion trajecto-
ries,” in Computer vision (ICCV), 2011 IEEE
international conference on. IEEE, 2011, pp.
1164–1171. 1

[6] A. Robicquet, A. Sadeghian, A. Alahi, and
S. Savarese, “Learning social etiquette: Human
trajectory understanding in crowded scenes,”
in European conference on computer vision.
Springer, 2016, pp. 549–565. 2

[7] A. Vemula, K. Muelling, and J. Oh, “Social at-
tention: Modeling attention in human crowds,”

11



(a) H-H model - Hotel scene (b) H-H-O model - Hotel scene

(c) H-H-O model - ZARA scene (d) H-H-O model - ZARA scene

Figure 4: Visualization results for Hotel and Zara sets.

in Proceedings of the International Conference
on Robotics and Automation (ICRA) 2018, May
2018. 2

[8] A. Alahi, K. Goel, V. Ramanathan, A. Ro-
bicquet, L. Fei-Fei, and S. Savarese, “Social
lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition,
2016, pp. 961–971. 2, 6

[9] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese,
and A. Alahi, “Social gan: Socially accept-
able trajectories with generative adversarial
networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), no.
CONF, 2018. 2, 3

[10] A. Sadeghian, V. Kosaraju, A. Gupta,
S. Savarese, and A. Alahi, “Trajnet: To-
wards a benchmark for human trajectory
prediction,” arXiv preprint, 2018. 2, 6

[11] A. Jain, A. R. Zamir, S. Savarese, and A. Sax-
ena, “Structural-rnn: Deep learning on spatio-
temporal graphs,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5308–5317. 2, 3

[12] P. Velickovic, G. Cucurull, A. Casanova,
A. Romero, P. Lio, and Y. Bengio, “Graph at-
tention networks,” stat, vol. 1050, p. 20, 2017.
2, 3

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in
Advances in Neural Information Processing
Systems, 2017, pp. 6000–6010. 2, 4, 5

[14] S. van Steenkiste, M. Chang, K. Greff, and
J. Schmidhuber, “Relational neural expecta-
tion maximization: Unsupervised discovery of
objects and their interactions,” arXiv preprint
arXiv:1802.10353, 2018. 2, 3

[15] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende
et al., “Interaction networks for learning about
objects, relations and physics,” in Advances in
neural information processing systems, 2016,
pp. 4502–4510. 2, 3

12



[16] T. Fernando, S. Denman, S. Sridharan, and
C. Fookes, “Soft+ hardwired attention: An lstm
framework for human trajectory prediction and
abnormal event detection,” Neural networks,
vol. 108, pp. 466–478, 2018. 2, 3

[17] D. Helbing and P. Molnar, “Social force model
for pedestrian dynamics,” Physical review E,
vol. 51, no. 5, p. 4282, 1995. 2

[18] D. Varshneya and G. Srinivasaraghavan,
“Human trajectory prediction using spatially
aware deep attention models,” arXiv preprint
arXiv:1705.09436, 2017. 3

[19] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H.
Torr, and M. Chandraker, “Desire: Distant fu-
ture prediction in dynamic scenes with interact-
ing agents,” 2017. 3

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagen-
buchner, and G. Monfardini, “The graph neural
network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009. 3

[21] K. Cho, B. Van Merriënboer, C. Gulcehre,
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