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ABSTRACT
Program obfuscation is widely used to protect commercial soft-
ware against reverse-engineering. However, an adversary can still
download, disassemble and analyze binaries of the obfuscated code
executed on an embedded System-on-Chip (SoC), and by correlat-
ing execution times to input values, extract secret information from
the program. In this paper, we show (1) the impact of widely-used
obfuscation methods on timing leakage, and (2) that well-known
software countermeasures to reduce timing leakage of programs,
are not always effective for low-noise environments found in em-
bedded systems. We propose two methods for mitigating timing
leakage in obfuscated codes. The first is a compiler driven method,
called TAD, which removes conditional branches with distinguish-
able execution times for an input program. In the second method
(TADCI), TAD is combined with dynamic hardware diversity by
replacing primitive instructions with Custom Instructions (CIs) that
exhibit non-deterministic execution times at runtime. Experimental
results on the RISC-V platform show that the information leakage
is reduced by 92% and 82% when TADCI is applied to the original
and obfuscated source code, respectively.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; • Software and its engineering→ Source code gener-
ation; • Computer systems organization→ Embedded systems;
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1 INTRODUCTION
Advancements in power management, computational capacities,
and the availability of affordable System-on-Chips (SoC) resulted in
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the omnipresence of embedded systems. These systems, which are
often interconnected and accessible through the Internet, perform
a specific task over a long period but lack the mechanism to include
new functionalities or security updates. Even if an update mecha-
nism is available, manufacturers often neglect obsolete devices due
to economic reasons. This presents opportunities for adversaries,
who have access to these devices, to extract secret and private infor-
mation, or to launch Distributed Denial of Service (DDoS) attacks
on large Internet services [4, 10, 28].

To increase the costs of obtaining information from a program,
obfuscation hides internal implementation details and has been
successfully used to delay reverse-engineering attacks (refer to
Section 2.1). Another form of attack, called the side-channel at-
tack, can extract secret information from a program on embedded
systems [2]. During side-channel attacks, the adversary correlates
emerging patterns in power consumption, temperature variations,
radiation emissions, periphery access patterns, or execution times
to obtain hidden information.

This work considers the problem of time side-channels, wherein
the observable execution time of a victim program depends on the
secret information and its inputs. While time side-channel attacks
and obfuscation techniques have been extensively, yet separately,
discussed in literature (refer to Section 2), this work investigates the
impact of source code obfuscation techniques on the information
leakage that can be exploited in time side-channel attacks.

In this paper an extension to the LLVM compiler framework [27]
is introduced, which obfuscates the software not only to harden
it against reverse-engineering but also to counteract the efflux of
information during those attacks. The extension is included in a
diversification framework that compiles security sensitive programs
for a RISC-V SoC composed of a Rocket core, a custom defined
Rocket Chip Co-processor (RoCC), instruction and data caches,
and a Floating Point Unit (FPU) [7]. Our framework generates an
extended instruction set that includes hardware support for timing
diversity in the form of Custom Instructions (CI) with variable
execution times (refer to Section 3). To obtain the results in Section 4,
the RoCC is further synthesized for the Zedboard featuring a Xilinx
Zynq-7000 FPGA [8], and the hardened programs are executed on
the baremetal RISC-V processor to emulate low-noise environments
commonly found in embedded systems. Finally, Section 5 draws
conclusions.

2 RELATEDWORK
Obfuscation techniques and time side-channel attacks, have been
extensively studied in literature for many years. This section sum-
marizes the state-of-the-art in both domains.
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Algorithm 1 Example Listing

1: function modExp(y,k)
2: r ← 1
3: for all ⟨ki |i ∈ k⟩ do
4: if ki = 1 then r ← (r × y) mod n end if
5: y ← y2 mod n

6: return r mod n

2.1 Obfuscation
Due to the high accessibility of embedded systems and their soft-
ware uniformity, an attacker can easily obtain such a system, and
extract, disassemble, analyze and alter the binary program code. To
prevent such a breach, the software is obfuscated [3, 18, 20, 23, 24].
An obfuscation function O(P) = P ′ converts a program P such
that P(x) = P ′(x) for all inputs of x . Ideally, there is no relation
between P ′ to its origin except what can be inferred by observ-
ing its inputs and outputs. Since no cryptographic guarantee of
security is given [5, 22] and its effectiveness is therefore discussed
controversially [38], the aforementioned methods cannot prevent a
reverse-engineering attack entirely. As a result, they only increase
the costs to analyze and understand the program through static
and dynamic analysis [37].

2.2 Side-Channel Attacks
Side-channel attacks aim to extract secret information from an
SoC like keys for encryption algorithms. By monitoring the be-
havior of a victim program such as the input/output sequences
caused by memory and periphery access [12, 36], cache perfor-
mance [1, 13, 21], power consumption, execution time [14, 15, 19],
or by combining multiple attack vectors [29], the attacker is able to
correlate emerging patterns to the actual value of the key.

To prevent time side-channel attacks, the execution time for
program P(x) needs to be constant and independent of its input
operands x . Varying instructions of conditional branches, cache
hits and misses, branch predictions, and variable-latency arithmetic
instructions cause distinguishable execution times. In the example
given in Listing 1, it can be observed that the execution time depends
on the number of set bits in key k .

Cross-copying (CC) [33] is an existing countermeasure against
time side-channel attacks. The method aims to equalize the execu-
tion time of conditional branches through program transformation.
For example, an else-branch is inserted into the example in Listing 1,
which ideally should consist of the same instruction sequence. How-
ever, to ensure correctness, the added instructions must not exhibit
any side effects and hence cannot be the same resulting in distin-
guishable execution times especially in low-noise environments as
shown in Figure 1a.

Another method to prevent time side-channel attacks is called
conditional assignment (CA) [31], which embeds the predicate of
a condition in a mask. The security sensitive program sequence is
modified such that the values (r in Listing 1) are always calculated.
Before the changes are committed to memory, the mask is applied to
choose the correct value. This method removes the entire condition
and therefore the divergence of different execution paths in the
Control Flow Graph (CFG).
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Figure 1: Distinguishable execution times for the example given in
Listing 1 after applying CC and CA.

While both methods reduce the information leakage by nor-
malizing the execution time across the CFG, they do not prevent
information leakage due to instructions, whose latencies depend on
the operand values. Such instructions may result in distinguishable
execution times especially in low-noise environments such as SoCs
without an OS and its scheduling mechanisms (refer to Figure 1).
Therefore, any program that is hardened against time side-channel
attacks, cannot have several execution paths in the CFG and must
avoid any instruction, which leaks secret information.

Similar to our work, a processor architecture and compiler, called
Øzone, reduce information leakage in [9]. Instead of a mask, a con-
ditional move instruction (CMOV) of the x86 architecture, is used
with the condition as a predicate. To further reduce the time side-
channel leakage, complex hardware components such as uncached
scratchpad memories, pipeline flushes and hardware schedulers,
are employed. In our work, Custom Instructions (CIs) are utilized
to reduce the leakage effects without incurring major hardware
modifications of the base processor. The main contributions of this
paper are:
• We show that obfuscated codes exhibit timing leakage and
widely used software countermeasures on the obfuscated
codes are not always effective for low-noise environments
often found in embedded systems [32].
• An LLVM pass, called Time Side-Channel Attack Defense
(TAD), automatically creates conditional assignments in the
obfuscated codes during the compilation process to harden
security-critical functions against timing attacks.
• TADCI as an extension to TAD, addresses the problem of
value dependent instruction execution times by automati-
cally replacing these instructions with Custom Instructions
(CI) that exhibit a pseudo-random execution time, which
further reduces the information leakage.

3 IMPLEMENTATION
The proposed method to harden an obfuscated input program P ′

against time side-channel attacks automatically, is summarized in
Listing 2. The source code of the program, which comprises se-
curity critical functions, is compiled into the LLVM intermediate
representation (IR) format [26, 27] and has already been obfus-
cated by the methods described in [23] to increase the costs of
reverse-engineering. In the first step, a Control Flow Graph (CFG)
is created from P ′ consisting of Basic Blocks (BB) and their inter-
dependencies. Since only conditional BBs result in multiple graph
traversal possibilities, they are identified and marked in graph Gi f .



TAD: Time Side-Channel Attack Defense of Obfuscated Source Code ASP-DAC 2019, Jan. 2019, Tokyo, Japan

Algorithm 2 Timing Attack Defense (TAD) LLVM Pass

1: function TimingAttackDefensePass(P ′)
2: Gi f ← RecursiveSearchIf(CFG(P ′)
3: for all i fBB ∈ Gi f do
4: m ← ComputeStoreMask(i fcond )
5: SetTerminator(i fBB , i f True)
6: AdaptBranch(m, i fT rue )
7: AdaptBranch(¬m, i fFalse )
8: SetTerminator(i fT rue , i fFalse )
9: return InsertCI(P ′)
10: function AdaptBranch(mask,branch)
11: for all inst ∈ GetBB(branch) do
12: if s = StoreInst(inst) then
13: o ← LoadOriginalValue(saddress )
14: Replace(s, (mask ∧ svalue ) ∨ (¬mask ∧ o))

For each BB in Gi f , the condition is converted into a mask com-
putation such that all bits are set, if the condition is true, and all bits
equal 0 otherwise. This value is stored (line 4), followed by replac-
ing the conditional branch with an unconditional jump instruction
into the first BB of the if-branch i fT rue . Therefore, all instructions
in this branch always execute independently of the result of the
condition (refer to Figure 2b).

However, to ensure correctness, any store instruction found in
the BBs of the if-branches, needs to check the mask first, before the
computed value is committed to the memory. For instance, in the
case where the condition is false, all the computations of i fT rue
need to be discarded (refer to line 14).

If an else-branch exists, the inverse mask is applied to all store
instructions followed by the insertion of an unconditional branch
instruction from the last BB of i fT rue to the first BB in the else-
branch i fFalse . Therefore, if the algorithm is applied to the example
in Listing 1, all traversal options are removed. Hence, a constant
program execution time is ensured.

entry for.cond

for.body for.end

if.then

if.end for.inc

(a) Original CFG

entry for.cond

for.body for.end

if.then

if.end for.inc

(b) Modified CFG

entry for.cond

for.body for.end

if.then if.cloned

if.end for.inc

(c) Branch cloning

Figure 2: Possible branch modifications to ensure constant execu-
tion times for Listing 1.

In the final step, all instructions, whose execution times depend
on the operand value, are replaced by Custom Instructions (CI) in
line 9. The CIs consist of 2 parts:

(1) A software interface extending the instruction set of the
RISC-V architecture, which comprises opcodes dedicated to
the RoCC [7]. Further it carries configuration information
about the CI to be executed, which registers to use for loading
and storing operands, etc.

(2) A hardware diversification representing the intended func-
tionality. It is implemented in a Hardware Description Lan-
guage (HDL) and uploaded into the RoCC. The RoCC is a
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Files
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ICache

+4

MemoryExecuteDecodeFetchPC Commit

FPU, MUL/DIV

A
L

U

RoCC
BranchPrediction

Figure 3: Overview of the RISC-V architecture with RoCC

decoupled extension to the execution stage of the ALU and
can be configured with an arbitrary functionality without
major modifications to the processor. While the RoCC per-
forms the computation, the ALU stalls until the instruction
completes.

Thus, a tight relationship between the software interface and
the RoCC implementation exists and the developer must be aware
of the supported CIs for a particular RISC-V implementation. Their
equivalent functionalities are implemented in Verilog HDL and
synthesized for the RoCC. In addition, a pseudo-random generator
stalls the ALU for a non-deterministic amount of clock cycles, when
a CI is executed [34]. For the examples given in section 4, CIs replace
the multiplication and modulo instructions. However they can also
consist of a conglomerate of multiple instructions. Keeping the
functionalities of CIs secret together with the embedment into
obfuscated program code, prevents the attacker from removing
the TAD without breaking the program functionality (remove-and-
replace attacks). The remaining instructions execute in the base
processor as before.

A high-level block diagram representing the layout of the pro-
cessor is given in Figure 3. Depending on the configuration, the
RISC-V core is equipped with dedicated arithmetic units, an RoCC,
an FPU, and caches. As it can be observed in the figure, the proposed
method requires no modifications to the base processor as only the
RoCC implements the hardware diversification.

3.1 Conditional Assignment versus Branch
Cloning

Another method tomodify a program to prevent timing information
leakage is to clone entire branches (refer to Figure 2c). To ensure
correctness, the cloned branches must not have any side effects.
Therefore, all addresses of store instructions are replaced by newly
allocated dummy memory locations. However, at later compilation
stages, the compiler may discover that those dummy locations
are always written but never read, and the corresponding code is
removed. In addition, although the instruction execution requires
the same time for each of the cloned BB, it was observed that the
load and store instructions were subjected to delays arising from
cache misses when the execution path of the CFG took a different
branch. As a result, an attacker can perform side-channel attacks
by extracting timing information and correlate it to the number of
branch switches between consecutive loop iterations.

4 EXPERIMENTAL RESULTS
The threat model includes an attacker, who knows the functional-
ity of the program and has physical access to the embedded sys-
tem. Through debugging interfaces and port probing, any program
stored in the memory either outside or within the SoC, can be ex-
tracted, disassembled and analyzed. Although the adversary can
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Figure 4: Impact of the proposed algorithm on the channel capacity
on the unobfuscated implementation executed in a low-noise envi-
ronment.

Algorithm 3 mulMod16 Example

1: function mulMod16(a,b)
2: a ← a ∧ 65535; b ← b ∧ 65535
3: if a = 0 then a ← 65537 − b
4: else
5: if b = 0 then a ← 65537 − a
6: else
7: p ← a × b; b ← p ∧ 65535; a ← b − p/216
8: if b < a then a ← a + 1 end if
9: return a ∧ 65535

measure the execution time accurately, he is unaware of the internal
implementation details nor has access to the original source code
used to create the binary under investigation. Other leakage chan-
nels caused by power consumption, temperature or electromagnetic
variations are not considered in this work.

This section discusses and analyzes two representative examples
to demonstrate the effectiveness of TAD and TADCI: (1) modExp
provides the RSA modulo exponent functionality [35] to encrypt
and decrypt a message from the benchmark suite introduced in [31]
(refer to Listing 1). It consists of a loop with a static iteration count,
often found in cryptographic algorithms such as AES, and (2) a
modular multiplication from the IDEA cipher [25] implemented in
mulMod16 (Listing 3).

Both implementations are obfuscated using various sequences of
program transformations and their obfuscation and leakage levels
are computed. Since the obfuscator generates a different binary
with every compilation run, the source codes of both examples
have been compiled 15 times for each experiment by Clang 7.0.0
without compiler optimizations. The resulting binaries are uploaded
to the RISC-V softcore processor with its RoCC, which are hosted
on the Xilinx Zynq-7000 FPGA. No operating system boots on
that core to emulate an execution environment with low noise
levels. 1000 iterations of all compiled binaries are executed for
two distinguishable keys each. An integrated performance counter,
which increments with every clock cycle spent in the security
sensitive section, gives an exact measurement of execution times
for this region. LeakiEst [16] iteratively estimating the channel
capacity using the Blahut-Arimoto algorithm [6, 11], computes the
relationship between the given input and the observed time.

4.1 Time Side-Channel Capacity
During a time side-channel attack, the unintentional leakage of
information represents a communication channel that transmits
data to the adversary. Like any other communication channel, its

capacity can be computed by Shannon’s Theorem [39], which is
equal to the upper bound of transmission rate through that channel.

Figure 4 shows the information leakage of the original implemen-
tation (baseline, BL) of modExp and mulMod16 and their modified
versions such as the manual insertion of CA and CC. These mod-
ifications have a negligible impact on the channel capacity. The
information leakage on the mulMod16 example is primarily caused
by a large else-branch that includes a complex multiplication (List-
ing 3). In addition, despite that the proposed TAD has normalized
the execution times of modExp (refer to the histograms in Figures
5a and 5b), it is insufficient to compensate for the jitter caused by
variable-latency arithmetic instructions, cache hits and misses and
memory access latencies in low-noise environments. Therefore,
the conditional branches that are normalized using TAD, do not
result in a reduction in channel capacity. When TAD also replaces
instructions (TADCI), whose execution time depends on the value
of the operands (Figure 5c), the overall leakage is reduced by 88%
and 98% for modExp and mulMod16, respectively (see Figure 4).

In Figure 6, the information leakage is shown for various ob-
fuscation strategies. Numerical values in the description of the
obfuscation strategy represent the iterations the corresponding
obfuscation method has been applied to the source code. As can be
observed in Figure 6b, if the original source code of mulMod16 is
obfuscated, the leakage of information is reduced to 19% in aver-
age by normalizing the execution time (TAD) without the need to
replace variable-latency arithmetic instructions. TADCI has only a
marginal effect on the channel capacity. However, for modExp, it is
necessary to replace the variable-latency arithmetic instructions
(TADCI) to reduce the leakage sufficiently to 16% in average (Fig-
ure 6a). Here, these instructions are nested in conditional branches
executed multiple times in a loop, while in the mulMod16 example,
the number of invocations of the instructions is limited.

Furthermore, as shown in the figure, incorporating bogus flow
control (BFC) in the obfuscation pass has a positive impact on the
channel capacity. On average, the leakage reduces by 52% (modExp)
and 43% (mulMod16), when compared to the original source code.
Where the source code has been obfuscated in several iterations
of substitution (Sub3), bogus flow control (BCF2) and flattening
(Fla), the information leakage reduces to 30% even without hard-
ening the code using TAD or TADCI. Code obfuscation leads to a
significant increase in code size, which reduces the execution time
ratio between the sensitive code sections and the remaining ones.
The inherent increase in memory accesses and cache latencies over-
shadows the otherwise observable variations, indirectly reducing
the information leakage.

The results show that for low-noise environments, existing coun-
termeasures cannot sufficiently thwart time side-channel attacks.
A combination of hardware diversification in the form of CIs and
side-channel attack centric code obfuscation is required so that an
attacker cannot draw conclusions from emerging execution time
patterns.

4.2 Normalized Compression Distance
The effectiveness of countermeasures against reverse-engineering is
measured by analyzing the complexity of the obfuscated P ′ = O(P)
and calculating its distance from the original program P . In this
paper, the Normalized Compression Distance (NCD) [17] which is
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Figure 5: Histogram of execution times in clock cycles of the original (BL) code of modExp and with TAD/TADCI
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Figure 6: Time side-channel information leakage, when various obfuscation techniques (Sub - substitution, BCF - bogus flow control, Fla -
flattening) are applied to the baseline (BL) source code.
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Figure 7: Similarities between the baseline (BL), CA, CC, and the effect of obfuscation.

approximated by the Kolmogorov complexity [30], is used as the
metric for the effectiveness of code obfuscation. An NCD value
close to 0 indicates a high level of similarity between O(P) and P .
Figure 7 shows that the difference in NCD of CA, CC, TAD and
TADCI on the baseline (BL) for the same obfuscations is negligible.
In contrast, the application of arithmetic substitutions or the inser-
tion of BFC significantly removes similar structures in the code and
hence increases the cost for a reverse-engineer attack.

4.3 Performance and Hardware Utilization
This section discusses the additional penalties in terms of program
execution time incurred by applying TAD to the baseline and obfus-
cated source code. In addition, since TADCI requires a co-processor,
its hardware costs are presented.

4.3.1 Performance. Figure 8 shows the relative performance
penalties when TAD and TADCI alter the baseline and obfuscated
source codes, respectively. If TAD/TADCI is applied to the baselines,
the execution times increase significantly. The relative overhead
decreases, if the source code is obfuscated, since the negative per-
formance effect of the obfuscations is larger than the one caused
by TAD/TADCI.

The impact of TADCI depends on the program and the selected
obfuscation sequences. While for Sub3, Sub5, BCF1+Fla, Sub3+Fla,
and Sub3+BCF1 the differences in execution times between TAD

and TADCI are negligible in the mulMod16 example, they are promi-
nent for other obfuscation methods and in modExp. In modExp, the
obfuscated code and the CIs execute in a loop (refer to Listing 1).
Hence binaries of modExp modified by TADCI, exhibit an increase
of execution time by 36% on average when compared to TAD, while
the impact of TADCI for mulMod16 is only 3%.
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Figure 8: Average impact of TAD and TADCI on the BL source code
of modExp and mulMod16 including various obfuscations applied

4.3.2 Resource Utilization. Table 1 shows the increase in Look-
Up-Tables (LUT) and DSPs, when the RoCC is added to provide
the hardware diversification functionality. The RoCC inclusion to
support CIs, increases the LUT requirements of a Xilinx Zynq-7000
FPGA marginally by 2%. Due to the CIs consisting of multipliers,
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Table 1: Hardware Resource Utilization

RISC-V RISC-V with RoCC Change
LUTs 32310 32953 +2%
DSPs 15 25 +67%
BRAM 24 24 –

additional DSPs are used. These results confirm that the proposed
method can be realized with very small resource overhead.

5 CONCLUSION
Code obfuscation can be vulnerable to time side-channel attacks
for embedded systems operating in low-noise environments. We
propose a compiler driven method called Time Side-Channel At-
tack Defense (TAD) to automatically harden the obfuscated code
against time side-channel attacks. In addition, we extend TAD to
replace arithmetic operations, whose the execution times depend
on the operand values, by Custom Instructions (CI) that exhibit
non-deterministic latencies. The proposed method, called TADCI,
requires no changes to the base processor, since the CI function-
alities are encapsulated in the Rocket Chip Co-processor (RoCC).
Extensive experiments were conducted on a RISC-V system with
the RoCC hosted on a Xilinx Zynq-7000 FPGA. They show that the
proposed method reduces the average information leakage by 92%
for the original source code and 82% for obfuscated binaries with
negligible resource overhead. In particular, only 2% of LUTs and
additional 10 DSPs are required to achieve hardware diversification.
In addition, when the proposed solution is applied to obfuscated
binaries, only an average of 16% and 27% performance overheads
are incurred for TAD and TADCI, respectively.
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