

1

Abstract—Corner detection plays an essential role in many

computer vision applications e.g. object recognition, motion
analysis and stereo matching. In this paper, we present a novel
data-path transposition strategy for the hardware design of the
FAST corner detector. The proposed design transposes the data-
path of the conventional architecture to enable partial evaluation
of multiple corners in a pipelined manner, which reduces the size
of the window buffer. Further area savings were achieved by
combining the operations for computing the corner scores and
determining the member vectors. We show that the proposed
design on 180-nm CMOS technology leads to about 22%
reduction in the critical path delay and lesser area compared to
the previously reported architecture, without notable difference
in energy consumption.

Index Terms—corner detection; hardware accelerator; data-

path; ASIC; FPGA; embedded vision

I. INTRODUCTION

EAL-time computer vision algorithms are extensively
used in a wide range of applications such as vision-based

navigation of unmanned vehicles and robots, object tracking,
visual SLAM (Simultaneous Localization and Mapping),
stereo matching, and ensuring safety in environments with
sharp moving objects [1]-[5]. A fundamental step in these
applications is the detection of corners which represent
identifiable anchor points in the image.

Several hardware designs have been recently proposed for
the FAST (Features from Accelerated Segment Test) corner
detection [6]-[9]. Existing techniques often exploit the
inherent parallelism in the corner detectors to achieve high
throughput. However, the computational flow of these
architectures remains largely unchanged and there has been
little effort undertaken to investigate alternative data-path
structures that can lead to higher gains in area-time.

In this paper, we present a novel hardware design strategy
using data-path transposition to realize a pipelined FAST
corner detector [10]-[11] architecture that does not require
intermediate full frame buffering. Instead of employing a large
7x7 window buffer for examining a single pixel at each clock
cycle, which is the typical method adopted in existing works
[6]-[8], we propose to use a smaller 7x3 window buffer and

S.-K. Lam, T.C. Lim, M. Wu, B. Cao, and B.A. Jasani is with School of

Computer Science and Engineering, Nanyang Technological University, 50
Nanyang Avenue, Singapore (e-mail: siewkei_lam@pmail.ntu.edu.sg).

transpose the data-path to enable multiple pixels to be
examined concurrently. This enables the number of registers
to be reduced. The combinational area is further reduced by
adopting two’s complement adders to simultaneously compute
the corner scores and determine the member vectors. Synthesis
results based on 180-nm CMOS technology show that the
proposed architecture leads to about 22% area-time product
reduction compared to the existing architecture, without
notable differences in energy consumption.

In Section 2, we briefly discuss the existing work in
accelerating the FAST corner detector. We then describe the
FAST algorithm and the baseline hardware implementation in
Section 3. Section 4 presents the proposed design. The
synthesis results are shown in Section 5 to demonstrate the
benefits of our approach and Section 6 concludes the paper.

II. RELATED WORK

The FAST algorithm was first presented in [10] and later
improved in [11]. The improved version employs machine
learning to build a decision tree from a set of training images
for classifying corners on future images. The work in [9]
presented an FPGA implementation of the machine learned
FAST algorithm that is based on a binary look-up table. A
FAST architecture using a string matching algorithm was
proposed in [12][13]. This implementation requires an
external memory for frame buffering and a mechanism for
sequencing the input data in the form of a 1D text for string
matching. The work in [6] presented an FPGA implementation
of the original FAST algorithm that does not require
intermediate frame buffering. This leads to significant area
savings as the architecture can directly process the pixels from
the camera output with a simple interface. A similar FPGA
architecture that runs on 50MHz operating frequency was
presented in [7], which showed significant performance gain
over the software implementation running on a 1GHz mobile
phone.

FAST has also been utilized as a preliminary step for
computing feature descriptors such as ORB (Oriented FAST
and Rotated BRIEF) [13], which are used for a wide range of
applications, e.g. object recognition, visual SLAM, image
representation, motion tracking, etc. Recently, the work in [8]
presented an FPGA architecture of the FAST feature detector
and BRIEF feature descriptor which can process images of
resolution 1280x720 at 109 frames per second.

Area-Time Efficient FAST Corner Detector
using Data-path Transposition

Siew-Kei Lam, Member, IEEE, Teck Chuan Lim, Meiqing Wu, Bin Cao, and Bhavan A. Jasani

R

2

Fig. 1: Testing for corners at pixel (a): p1 at time t, (b) p2 at time t+1, and (c) p3 at time t+2. The dotted lines show that at time t, the pixels in column C8 of the
window (light gray) can be used for partial examination of pixels p1, p2, and p3.

III. BASELINE ARCHITECTURE OF FAST CORNER DETECTOR

The implementations of the original FAST algorithm
presented in [6]-[8] adopt similar computational blocks which
will be used as our baseline architecture. The original FAST
algorithm proposed in [10] tests for a corner at each pixel pi in
an image frame by examining the Bresenham circle of 16
pixels around pi. A 7x7 window buffer centered on is used
to enable parallel examination of the 16 surrounding pixels to
facilitate the testing of one pixel per clock. Let ݔ

, where ݆ ൌ
1,2,… ,16, be the pixels on the Bresenham circle that are used
in the corner test of pixel .

Fig. 1 shows the 7x7 window (light gray) for corner testing
of pixel pi and the corresponding ݔ

 pixels (dark gray) at time

t, t+1 and t+2. Each pixel ݔ
 in the window is evaluated in

parallel with pixel to generate two 16-bit member vectors
i.e. bright (݉

) and dark members (݉
):

݉
 ൌ

ۏ
ێ
ێ
ۍ ଵݔ

 ுܶ

ଶݔ
 ுܶ

⋮
ଵݔ
 ுܶ

 ے
ۑ
ۑ
ې
 , ݉

 ൌ

ۏ
ێ
ێ
ۍ ଵݔ

 ൏ ܶ

ଶݔ
 ൏ ܶ

⋮
ଵݔ
 ൏ ܶ

ے
ۑ
ۑ
ې
 (1)

where ுܶ

 ൌ ܶ ,ݐ
 ൌ െ and t is a predefined ,ݐ

threshold. Each element in the member vector is set to ‘1’ if
the corresponding condition is true, otherwise it is set to ’0’.
The scores for the bright and dark members (݁ݎܿݏ

 and
݁ݎܿݏ

 respectively) are then calculated as shown in Eq. (2).

/݁ݎܿݏ
 ൌ ൫݉/

 ൯
்
∙

ۏ
ێ
ێ
ଵݔۍ

/ ܶ
 െ ுܶ

 ଵݔ/

ଵݔ
/ ܶ

 െ ுܶ
 ଵݔ/

⋮
ଵݔ
/ ܶ

 െ ுܶ
 ଵݔ/

 ے
ۑ
ۑ
ې
 (2)

A final score value is calculated for each as shown in Eq.

(3). A contiguity check (Eq. (4)) is used to determine if there
are at least c contiguous elements in ݉

 or ݉
 that are true. In

[6]-[8], c = 9 (hence the algorithm is called FAST-9). Finally,
non-maximum suppression is applied to determine whether a
pixel is a corner or a non-corner. A pixel is a corner if it has a
maximal score among the scores of its adjacent neighbors.

݁ݎܿݏ ൌ ݁ݎܿݏ൫ݔܽ݉

 , ݁ݎܿݏ
 ൯ ∙ (3)ܥ

ܥ ൌ ൫⋁ ൫⋀ ݉

 ሺ݇ െ 1ሻௗ	ଵାଵ
ା଼
ୀ ൯ଵ

ୀଵ ൯⋁

൫⋁ ൫⋀ ݉
 ሺ݇ െ 1ሻௗ	ଵାଵ

ା଼
ୀ ൯ଵ

ୀଵ ൯ (4)

Fig. 2a shows the baseline architecture. We assume a single
input pixel of n-bit (in our implementation n = 8 for grayscale
image) arrives at each clock cycle. Similar to the
implementations in [6]-[8], 7 row buffers are concatenated in
the form of FIFO delay buffers to cache the incoming pixels.
The size of each row buffer is equivalent to the horizontal
resolution of the image, and hence each row buffer effectively
delays the input by one row [15]. The pixels at the tail end of
each row buffer are shifted into the 7x7 window buffer in Fig.
2a.

The Bright Score Unit (BSU) and Dark Score Unit (DSU)
determines the 16-bit member vectors ݉

 ,݉
 and

݁ݎܿݏ
 , ݁ݎܿݏ

 in parallel. The architecture of BSU and DSU
is shown in Fig. 2b. A 2-stage pipelined adder tree is
employed for computing the score values to enable
meaningful area-time evaluation with the proposed
architecture. The LSB of the score values are truncated to n
bits.	݉

 , ݉
 are used by the contiguity check to compute C୧.

Registers are included to ensure that the outputs score values
and member vectors are synchronized. The Max unit computes
the score of pi based on the bright score, dark score and
contiguity check.

Finally, the Non-Maximal Suppression (NMS) unit
determines if a pixel is a corner or not by comparing its score
value to the score values of its 8 adjacent pixels. To achieve
this, 2 row buffers are used in the NMS unit to produce a 1-bit
output that denotes whether the corresponding pixel is a corner
or non-corner. Note that all the outputs of each module in Fig.
2a are registered, creating a pipelined design with one input
and one output per clock cycle without the need of an input or
intermediate frame buffer.

The critical path of the baseline architecture lies in
BSU/DSU, i.e.: ܶ

 ൌ 3 ∙ ܶ ெܶ, where ܶ and ெܶ	
is the time required by the adder and multiplexer respectively.

3

Fig. 2: (a) Baseline architecture, (b) BSU/DSU.

IV. PROPOSED FAST-DT ARCHITECTURE

The baseline architecture in Fig. 2a utilizes a 7x7 window
buffer to enable the 16 pixels ݔ

 in the Bresenham circle to be

evaluated in parallel with pixel . Only one pixel is tested
for a corner at each time step. This approach results in under-
utilization of the other 33 pixels (7x7 – 16) in the window
buffer which could be used for partial evaluations of multiple
 .’s. This is shown with the help of the red dotted lines in Fig
1a, where at time t, all the pixels in column C8 of the window
can be used for partial examination of pixels p1, p2, and p3.

Our proposed architecture, called FAST-DT (DT stands for
Data-path Transposition), is shown in Fig. 3. The term
‘transposition’ refers to the transposition of the vertical
BSU/DSU data-path structures in the baseline architecture (see
Fig. 2b) to the horizontal BSU/DSU data-path structures in
Fig. 3. In our proposed architecture for the FAST algorithm,
the 7x7 window buffer is replaced by 7x3 window buffer. 3
columns of the window are required to cache the incoming
pixels before the center pixel is read from the FIFO delay
buffers. For example, it can be observed in Fig. 1a that we
need to cache the pixels in columns C6, C7 and C8 before we
can obtain the center pixel p1 from the FIFO delay buffer.

The BSU/DSU data-path is transposed to partially examine
multiple pixels concurrently using all the pixels in the last
column of the window buffer. It can be observed that the
proposed architecture in Fig. 3 only requires a 7x3 window
buffer, and BSU/DSU of the baseline architecture is unrolled
into 7 pipeline stages. Each stage performs partial evaluation
of a single . The partial results of each (partial member
vectors, bright/dark scores) will be passed to the next pipeline
stage after each clock cycle. The full evaluation of a single
will be completed after 7 clock cycles at the final pipeline
stage.

We can use the example in Fig. 1 to describe the data flow.

Let’s assume that at time t, the content of the last window
buffer column is C8. At time t, the partial results of p1 is
computed using ݔସଵ,	ݔହ

ଵ,	ݔଵ in the first pipeline stage of
BSU/DSU. In the next clock cycle at time t+1, the partial
results p1 is computed using ݔଷଵ,	ݔଵ in the second pipeline
stage and the new score values are added to the previously
computed score values from the first stage. At the same time,
new member vectors are generated and concatenated with the
previously identified member vectors. This is repeated until
the last pipeline stage at t+6 that computes the partial results
of p1 using ݔଵଶ

ଵ ଵଷݔ	,
ଵ ଵସଵݔ	, and concatenates/adds the partial

results in the previous pipeline stage to obtain ݉
ଵ /݉

ଵ and
ଵ݁ݎܿݏ/ଵ݁ݎܿݏ . Like the baseline architecture, a single output
is produced at each clock cycle.

Fig. 4 shows the architecture of the transposed BSU/DSU.
Each stage consists of either two or three score units, where
the score outputs are added using a 1-stage adder tree. Except
for the first pipeline stage, the score values of each stage are
added to the score value from the previous pipeline stage. As
mentioned earlier, the last pipeline stage produces the final
score value of . Although not shown in the figure, the values
of Tୌ/T are also shifted through the BSU/DSU stages in a
pipelined manner, i.e. the score unit at a stage makes use of
the shifted Tୌ/T values from the previous stage.

The architecture of the BSU and DSU can be further
simplified by using two’s complement adders to compute
݁ݎܿݏ

 , ݁ݎܿݏ
 , and using the sign bits of the scores to

determine the member vectors as shown in Fig. 4. This
effectively removes 16 comparators in each of the BSU and
DSU without introducing much additional critical path delay.
We denote the proposed design with 1-stage adder tree for
computing the score as FAST-DT1, and the critical path of
FAST-DT1 is ܶ

ௗ௧ଵ ൌ 3 ∙ ܶ ூܶே ெܶ, where ூܶே is
the delay of an inverter.

4

Fig. 3: Proposed FAST-DT architecture.

Fig. 4: BSU/DSU pipeline stages for FAST-DT.

FAST-DT1 requires lesser area than the baseline architecture

due to the smaller window buffer and the elimination of
comparators for determining the member vectors. The area
reduction is achieved at a marginal increase in critical path
delay (i.e. ூܶே). Hence, FAST-DT1 and the baseline
architecture is expected to have similar throughput. To
improve the throughput of FAST-DT1, we include an
additional pipeline stage in the adder trees (2-stage adder tree)
for computing the score. Additional registers are also included
to maintain data synchronization. This design that uses a 2-
stage adder tree is denoted as FAST-DT2, which reduces the
critical path of FAST-DT1 to ܶ

ௗ௧ଶ ൌ 2 ∙ ܶ ூܶே ெܶ.
The synthesis results in the next section shows that the
reduced critical path delay is achieved while still maintaining
lesser area utilization than the baseline architecture.

V. RESULTS AND DISCUSSION

Table 1 shows the resource analysis for the baseline (Fig. 2),
and proposed FAST-DT1 and FAST-DT2 architectures (Fig.
3). The resources for row buffers, Contiguity Check, Max and
NMS are not shown since they do not vary among the three
architectures. ADD-T refers to the adders for the addition tree
that is used to compute the score values. The pipeline registers
at the adder trees and synchronization registers are omitted
from the resource analysis. It can be observed from Table 1
that FAST-DT1 requires lesser number of registers for the
window buffer than the baseline. In addition, FAST-DT1 has a
significant reduction in combinational area due to elimination
of the comparators. FAST-DT2 has the same combinational
area as FAST-DT1, but requires more pipeline registers due to
the additional pipeline stages.

5

TABLE 2: SYNTHESIS RESULTS OF FAST CORNER DETECTOR BASED ON 180-NM CMOS TECHNOLOGY LIBRARY

Design
Area

(sq um)
Minimum Clock

Period (ns)
Power
(mW)

Energy per
pixel

Area-Time
Product

Frames per second
for HD images

(1280x720)
Baseline 914534 1.93 416.29 803.44 1765050.29 562

FAST-DT1 905020 1.88 400.76 753.43 1701438.18 577
FAST-DT2 908353 1.50 543.98 815.97 1362530.07 723

TABLE 1: RESOURCE COMPARISON

 Baseline FAST-DT1 FAST-DT2
Window Buffer REG 49 21 21

BSU/DSU

ADD 16 16 16
ADD-T 15 16 16
MUX 16 16 16
Comb 16 COMP 16 INV 16 INV

The baseline and proposed architectures were implemented

using Verilog and synthesized with Synopsys DC targeting the
180-nm CMOS technology library. The designs were
synthesized to achieve maximum clock frequency. To perform
accurate power analysis, we use Synopsys VCS to obtain the
actual switching activity statistics of the architectures based on
a common input image. Energy per pixel is computed as the
product of power (mW) and minimum clock period (ns). As
shown in Table 2, the proposed FAST-DT1 architecture has
the lowest area utilization and power consumption, which is
expected from our resource analysis. The critical path delay of
FAST-DT1 is slightly lower than the baseline architecture.
Although we expected the converse due to the additional ூܶே
in FAST-DT1 as discussed in the previous section, the delay
difference between FAST-DT1 and baseline is negligible.
With the introduction of additional pipeline stages, FAST-
DT2 achieves 22.2% reduction in the critical path delay
compared to the baseline architecture while still maintaining
lesser area utilization. While the critical path delay of the
baseline architecture can be reduced with additional pipeline
stages in the adder tree, this will further increase its area
utilization, which at present, is already higher than FAST-DT1
and FAST-DT2. The area-product of the FAST-DT2
architecture is 22.8% lesser than the baseline architecture. The
proposed FAST-DT2 architecture has a higher clock operating
frequency and hence it consumes more power. However, the
energy per pixel is only about 1.6% higher than the baseline.
Hence, the proposed FAST-DT2 architecture offers the
highest area-time benefits without compromising on energy
efficiency compared to existing approaches. The last column
of Table 2 shows that the baseline and FAST-DT1 have
similar throughput (where FAST-DT1 requires lesser area and
power), while FAST-DT2 is capable of processing images
with resolution of 1280x720 at over 700 frames per second.

VI. CONCLUSION

Area-time analysis and synthesis results of FAST-DT1
confirm that the proposed transposed data-path structure for
FAST corner detector leads to lesser registers with the use of a
smaller window buffer for computing partial corner score
values in parallel. The use of two’s complement adders to
simultaneously compute the corner scores and members leads
to further area savings. These area optimizations are achieved

without notable difference in critical path delay compared to
the baseline architecture. By incorporating an additional
pipeline stage in the adder trees, the proposed FAST-DT2
architecture resulted in over 22% area-time reduction
compared to the baseline architecture, with similar energy
efficiency.

REFERENCES
[1] A. Schmidt, M., Kraft, and A. Kasinski, "An evaluation of image feature

detectors and descriptors for robot navigation", Computer Vision and
Graphics, Vol. 6375, pp. 251-259, 2010

[2] S. Gauglitz, T. Hollerer, and M. Turk, "Evaluation of interest point
detectors and feature descriptors for visual tracking", International
Journal of Computer Vision, Vol. 94, pp. 335-360, 2011

[3] A. Gil, O. Mozos, M. Ballesta, and O. Reinoso, "A comparative
evaluation of interest point detectors and local descriptors for visual
SLAM", Machine Vision and Applications, Vol. 21, pp. 905-920, 2010

[4] J. Zhou, J. Yan, T. Wei, K. Wu, X, Chen and S. Hu, “Sharp corner/edge
recognition in domestic environments using RGB-D camera systems”,
IEEE Transactions on Circuits and System II: Express Briefs, Vol. 62,
No. 10, pp. 987-99, 2015

[5] L. Puglia, M. Vigliar, and G. Raiconi, “Real-time low-power FPGA
architecture for stereo vision”, IEEE Transactions on Circuits and
Systems II: Express Briefs, April 2017

[6] M. Kraft, A. Schmidt and A. Kasinski, “High-speed image feature
detection using FPGA implementation of FAST algorithm”,
Proceedings of the Third International Conference on Computer Vision
Theory and Applications, 2008

[7] D. Soberl, N. Zimic, A. Leonardis, J. Krivic and Miha Moskon,
“Hardware implementation of FAST algorithm for mobile applications”,
Journal of Signal Processing Systems, Vol. 79, No. 3, pp. 247-256, 2015

[8] M. Fularz, M. Kraft, A. Schmidt and A. Kasinski, "A high-performance
FPGA-based image feature detector and matcher based on the FAST and
BRIEF algorithms", International Journal of Advanced Robotic Systems,
Vol. 12, 2015

[9] K. Dohi, Y. Yorita, Y. Shibata, and K. Oguri, “Pattern compression of
fast corner detection for efficient hardware implementation”,
International Conference on Field Programmable Logic and
Applications, pp. 478–481, 2011

[10] E. Rosten and T. Drummond, “Fusing points and lines for high
performance tracking”, International Conference on Computer Vision,
pp. 1508–1515, 2005

[11] E. Rosten, R. Porter and T. Drummond, “Faster and better: A machine
learning approach to corner detection”, IEEE Transactions Pattern
Analysis and Machine Intelligence, 32, 105–119, 2010

[12] J.S. Park, H.E. Kim, and L.S. Kim, “A 182mW 94.3 f/s in full HD
pattern-matching based image recognition accelerator for an embedded
vision system in 0.13-μm CMOS technology”, IEEE Trans. Circuits and
Systems for Video Technology, Vol. 23, No. 5, pp. 832-845, 2013

[13] J.S. Park, H.E. Kim, H.Y. Kim, J. Lee and L.S. Kim, “A vision
processor with a unified interest-point detection and matching hardware
for accelerating a stereo-matching algorithm”, IEEE Trans. Circuits and
Systems for Video Technology, Vol. 26, No. 12, pp. 2328-2343, 2016

[14] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: an efficient
alternative to SIFT or SURF", IEEE International Conference on
Computer Vision, 2011

[15] S.L. Chen, “VLSI implementation of a low-cost high-quality image
scaling processor”, IEEE Transactions on Circuits and Systems II:
Express Briefs, Vol. 60, No. 1, 2013, pp. 31-35

