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Abstract—Corner detection plays an essential role in many 

computer vision applications e.g. object recognition, motion 
analysis and stereo matching. In this paper, we present a novel 
data-path transposition strategy for the hardware design of the 
FAST corner detector. The proposed design transposes the data-
path of the conventional architecture to enable partial evaluation 
of multiple corners in a pipelined manner, which reduces the size 
of the window buffer. Further area savings were achieved by 
combining the operations for computing the corner scores and 
determining the member vectors. We show that the proposed 
design on 180-nm CMOS technology leads to about 22% 
reduction in the critical path delay and lesser area compared to 
the previously reported architecture, without notable difference 
in energy consumption. 

   
Index Terms—corner detection; hardware accelerator; data-

path; ASIC; FPGA; embedded vision 

I. INTRODUCTION 

EAL-time computer vision algorithms are extensively 
used in a wide range of applications such as vision-based 

navigation of unmanned vehicles and robots, object tracking, 
visual SLAM (Simultaneous Localization and Mapping), 
stereo matching, and ensuring safety in environments with 
sharp moving objects [1]-[5]. A fundamental step in these 
applications is the detection of corners which represent 
identifiable anchor points in the image.   

Several hardware designs have been recently proposed for 
the FAST (Features from Accelerated Segment Test) corner 
detection [6]-[9]. Existing techniques often exploit the 
inherent parallelism in the corner detectors to achieve high 
throughput. However, the computational flow of these 
architectures remains largely unchanged and there has been 
little effort undertaken to investigate alternative data-path 
structures that can lead to higher gains in area-time.  

In this paper, we present a novel hardware design strategy 
using data-path transposition to realize a pipelined FAST 
corner detector [10]-[11] architecture that does not require 
intermediate full frame buffering. Instead of employing a large 
7x7 window buffer for examining a single pixel at each clock 
cycle, which is the typical method adopted in existing works 
[6]-[8], we propose to use a smaller 7x3 window buffer and 
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transpose the data-path to enable multiple pixels to be 
examined concurrently. This enables the number of registers 
to be reduced. The combinational area is further reduced by 
adopting two’s complement adders to simultaneously compute 
the corner scores and determine the member vectors. Synthesis 
results based on 180-nm CMOS technology show that the 
proposed architecture leads to about 22% area-time product 
reduction compared to the existing architecture, without 
notable differences in energy consumption.  

In Section 2, we briefly discuss the existing work in 
accelerating the FAST corner detector. We then describe the 
FAST algorithm and the baseline hardware implementation in 
Section 3. Section 4 presents the proposed design. The 
synthesis results are shown in Section 5 to demonstrate the 
benefits of our approach and Section 6 concludes the paper.  

II. RELATED WORK 

The FAST algorithm was first presented in [10] and later 
improved in [11]. The improved version employs machine 
learning to build a decision tree from a set of training images 
for classifying corners on future images. The work in [9] 
presented an FPGA implementation of the machine learned 
FAST algorithm that is based on a binary look-up table. A 
FAST architecture using a string matching algorithm was 
proposed in [12][13]. This implementation requires an 
external memory for frame buffering and a mechanism for 
sequencing the input data in the form of a 1D text for string 
matching. The work in [6] presented an FPGA implementation 
of the original FAST algorithm that does not require 
intermediate frame buffering. This leads to significant area 
savings as the architecture can directly process the pixels from 
the camera output with a simple interface. A similar FPGA 
architecture that runs on 50MHz operating frequency was 
presented in [7], which showed significant performance gain 
over the software implementation running on a 1GHz mobile 
phone.    

FAST has also been utilized as a preliminary step for 
computing feature descriptors such as ORB (Oriented FAST 
and Rotated BRIEF) [13], which are used for a wide range of 
applications, e.g. object recognition, visual SLAM, image 
representation, motion tracking, etc. Recently, the work in [8] 
presented an FPGA architecture of the FAST feature detector 
and BRIEF feature descriptor which can process images of 
resolution 1280x720 at 109 frames per second. 
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Fig. 1: Testing for corners at pixel (a): p1 at time t, (b) p2 at time t+1, and (c) p3 at time t+2. The dotted lines show that at time t, the pixels in column C8 of the 
window (light gray) can be used for partial examination of pixels p1, p2, and p3. 

III. BASELINE ARCHITECTURE OF FAST CORNER DETECTOR 

The implementations of the original FAST algorithm 
presented in [6]-[8] adopt similar computational blocks which 
will be used as our baseline architecture. The original FAST 
algorithm proposed in [10] tests for a corner at each pixel pi in 
an image frame by examining the Bresenham circle of 16 
pixels around pi. A 7x7 window buffer centered on  is used 
to enable parallel examination of the 16 surrounding pixels to 
facilitate the testing of one pixel per clock. Let ݔ

, where ݆ ൌ
1,2,… ,16, be the pixels on the Bresenham circle that are used 
in the corner test of pixel .  

Fig. 1 shows the 7x7 window (light gray) for corner testing 
of pixel pi and the corresponding ݔ

 pixels (dark gray) at time 

t, t+1 and t+2. Each pixel ݔ
 in the window is evaluated in 

parallel with pixel  to generate two 16-bit member vectors 
i.e. bright (݉

 ) and dark members (݉
 ): 
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where ுܶ

 ൌ   ܶ ,ݐ
 ൌ  െ  and t is a predefined ,ݐ

threshold. Each element in the member vector is set to ‘1’ if 
the corresponding condition is true, otherwise it is set to ’0’. 
The scores for the bright and dark members (݁ݎܿݏ

  and 
݁ݎܿݏ

  respectively) are then calculated as shown in Eq. (2). 
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A final score value is calculated for each  as shown in Eq. 

(3). A contiguity check (Eq. (4)) is used to determine if there 
are at least c contiguous elements in ݉

  or ݉
  that are true. In 

[6]-[8], c = 9 (hence the algorithm is called FAST-9). Finally, 
non-maximum suppression is applied to determine whether a 
pixel is a corner or a non-corner. A pixel is a corner if it has a 
maximal score among the scores of its adjacent neighbors. 
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Fig. 2a shows the baseline architecture. We assume a single 
input pixel of n-bit (in our implementation n = 8 for grayscale 
image) arrives at each clock cycle. Similar to the 
implementations in [6]-[8], 7 row buffers are concatenated in 
the form of FIFO delay buffers to cache the incoming pixels. 
The size of each row buffer is equivalent to the horizontal 
resolution of the image, and hence each row buffer effectively 
delays the input by one row [15]. The pixels at the tail end of 
each row buffer are shifted into the 7x7 window buffer in Fig. 
2a.  

The Bright Score Unit (BSU) and Dark Score Unit (DSU) 
determines the 16-bit member vectors ݉

 ,݉
  and 

݁ݎܿݏ
 , ݁ݎܿݏ

  in parallel. The architecture of BSU and DSU 
is shown in Fig. 2b. A 2-stage pipelined adder tree is 
employed for computing the score values to enable 
meaningful area-time evaluation with the proposed 
architecture. The LSB of the score values are truncated to n 
bits.	݉

 , ݉
  are used by the contiguity check to compute C୧. 

Registers are included to ensure that the outputs score values 
and member vectors are synchronized. The Max unit computes 
the score of pi based on the bright score, dark score and 
contiguity check. 

Finally, the Non-Maximal Suppression (NMS) unit 
determines if a pixel is a corner or not by comparing its score 
value to the score values of its 8 adjacent pixels. To achieve 
this, 2 row buffers are used in the NMS unit to produce a 1-bit 
output that denotes whether the corresponding pixel is a corner 
or non-corner. Note that all the outputs of each module in Fig. 
2a are registered, creating a pipelined design with one input 
and one output per clock cycle without the need of an input or 
intermediate frame buffer.  

The critical path of the baseline architecture lies in 
BSU/DSU, i.e.: ܶ

 ൌ 3 ∙ ܶ  ெܶ, where ܶ and ெܶ	 
is the time required by the adder and multiplexer respectively. 
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Fig. 2: (a) Baseline architecture, (b) BSU/DSU. 

IV. PROPOSED FAST-DT ARCHITECTURE 

The baseline architecture in Fig. 2a utilizes a 7x7 window 
buffer to enable the 16 pixels ݔ

 in the Bresenham circle to be 

evaluated in parallel with pixel . Only one pixel  is tested 
for a corner at each time step. This approach results in under-
utilization of the other 33 pixels (7x7 – 16) in the window 
buffer which could be used for partial evaluations of multiple 
 .’s. This is shown with the help of the red dotted lines in Fig
1a, where at time t, all the pixels in column C8 of the window 
can be used for partial examination of pixels p1, p2, and p3. 

Our proposed architecture, called FAST-DT (DT stands for 
Data-path Transposition), is shown in Fig. 3. The term 
‘transposition’ refers to the transposition of the vertical 
BSU/DSU data-path structures in the baseline architecture (see 
Fig. 2b) to the horizontal BSU/DSU data-path structures in 
Fig. 3. In our proposed architecture for the FAST algorithm, 
the 7x7 window buffer is replaced by 7x3 window buffer. 3 
columns of the window are required to cache the incoming 
pixels before the center pixel is read from the FIFO delay 
buffers. For example, it can be observed in Fig. 1a that we 
need to cache the pixels in columns C6, C7 and C8 before we 
can obtain the center pixel p1 from the FIFO delay buffer.  

The BSU/DSU data-path is transposed to partially examine 
multiple pixels concurrently using all the pixels in the last 
column of the window buffer. It can be observed that the 
proposed architecture in Fig. 3 only requires a 7x3 window 
buffer, and BSU/DSU of the baseline architecture is unrolled 
into 7 pipeline stages. Each stage performs partial evaluation 
of a single . The partial results of each  (partial member 
vectors, bright/dark scores) will be passed to the next pipeline 
stage after each clock cycle. The full evaluation of a single  
will be completed after 7 clock cycles at the final pipeline 
stage. 

We can use the example in Fig. 1 to describe the data flow. 

Let’s assume that at time t, the content of the last window 
buffer column is C8. At time t, the partial results of p1 is 
computed using ݔସଵ,	ݔହ

ଵ,	ݔଵ in the first pipeline stage of 
BSU/DSU. In the next clock cycle at time t+1, the partial 
results p1 is computed using ݔଷଵ,	ݔଵ in the second pipeline 
stage and the new score values are added to the previously 
computed score values from the first stage. At the same time, 
new member vectors are generated and concatenated with the 
previously identified member vectors. This is repeated until 
the last pipeline stage at t+6 that computes the partial results 
of p1 using ݔଵଶ

ଵ ଵଷݔ	,
ଵ ଵସଵݔ	,  and concatenates/adds the partial 

results in the previous pipeline stage to obtain ݉
ଵ /݉

ଵ  and 
ଵ݁ݎܿݏ/ଵ݁ݎܿݏ . Like the baseline architecture, a single output 
is produced at each clock cycle. 

Fig. 4 shows the architecture of the transposed BSU/DSU. 
Each stage consists of either two or three score units, where 
the score outputs are added using a 1-stage adder tree. Except 
for the first pipeline stage, the score values of each stage are 
added to the score value from the previous pipeline stage. As 
mentioned earlier, the last pipeline stage produces the final 
score value of . Although not shown in the figure, the values 
of Tୌ/T are also shifted through the BSU/DSU stages in a 
pipelined manner, i.e. the score unit at a stage makes use of 
the shifted Tୌ/T values from the previous stage. 

The architecture of the BSU and DSU can be further 
simplified by using two’s complement adders to compute 
݁ݎܿݏ

 , ݁ݎܿݏ
 , and using the sign bits of the scores to 

determine the member vectors as shown in Fig. 4. This 
effectively removes 16 comparators in each of the BSU and 
DSU without introducing much additional critical path delay. 
We denote the proposed design with 1-stage adder tree for 
computing the score as FAST-DT1, and the critical path of 
FAST-DT1 is ܶ

ௗ௧ଵ ൌ 3 ∙ ܶ  ூܶே  ெܶ, where ூܶே is 
the delay of an inverter. 
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Fig. 3: Proposed FAST-DT architecture. 

 

 
Fig. 4: BSU/DSU pipeline stages for FAST-DT. 

 
FAST-DT1 requires lesser area than the baseline architecture 

due to the smaller window buffer and the elimination of 
comparators for determining the member vectors. The area 
reduction is achieved at a marginal increase in critical path 
delay (i.e. ூܶே). Hence, FAST-DT1 and the baseline 
architecture is expected to have similar throughput. To 
improve the throughput of FAST-DT1, we include an 
additional pipeline stage in the adder trees (2-stage adder tree) 
for computing the score. Additional registers are also included 
to maintain data synchronization. This design that uses a 2-
stage adder tree is denoted as FAST-DT2, which reduces the 
critical path of FAST-DT1 to ܶ

ௗ௧ଶ ൌ 2 ∙ ܶ  ூܶே  ெܶ. 
The synthesis results in the next section shows that the 
reduced critical path delay is achieved while still maintaining 
lesser area utilization than the baseline architecture.  

V. RESULTS AND DISCUSSION 

Table 1 shows the resource analysis for the baseline (Fig. 2), 
and proposed FAST-DT1 and FAST-DT2 architectures (Fig. 
3). The resources for row buffers, Contiguity Check, Max and 
NMS are not shown since they do not vary among the three 
architectures. ADD-T refers to the adders for the addition tree 
that is used to compute the score values. The pipeline registers 
at the adder trees and synchronization registers are omitted 
from the resource analysis. It can be observed from Table 1 
that FAST-DT1 requires lesser number of registers for the 
window buffer than the baseline. In addition, FAST-DT1 has a 
significant reduction in combinational area due to elimination 
of the comparators. FAST-DT2 has the same combinational 
area as FAST-DT1, but requires more pipeline registers due to 
the additional pipeline stages. 
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TABLE 2: SYNTHESIS RESULTS OF FAST CORNER DETECTOR BASED ON 180-NM CMOS TECHNOLOGY LIBRARY 

Design 
Area 

(sq um) 
Minimum Clock 

Period (ns) 
Power  
(mW) 

Energy per 
pixel  

Area-Time 
Product 

Frames per second 
for HD images 

(1280x720) 
Baseline 914534 1.93 416.29 803.44 1765050.29 562 

FAST-DT1 905020 1.88 400.76 753.43 1701438.18 577 
FAST-DT2 908353 1.50 543.98 815.97 1362530.07 723 

       
TABLE 1: RESOURCE COMPARISON 

  Baseline FAST-DT1 FAST-DT2 
Window Buffer REG 49 21 21 

BSU/DSU 

ADD 16 16 16 
ADD-T 15 16 16 
MUX 16 16 16 
Comb 16 COMP 16 INV 16 INV 

 
The baseline and proposed architectures were implemented 

using Verilog and synthesized with Synopsys DC targeting the 
180-nm CMOS technology library. The designs were 
synthesized to achieve maximum clock frequency. To perform 
accurate power analysis, we use Synopsys VCS to obtain the 
actual switching activity statistics of the architectures based on 
a common input image. Energy per pixel is computed as the 
product of power (mW) and minimum clock period (ns). As 
shown in Table 2, the proposed FAST-DT1 architecture has 
the lowest area utilization and power consumption, which is 
expected from our resource analysis. The critical path delay of 
FAST-DT1 is slightly lower than the baseline architecture. 
Although we expected the converse due to the additional ூܶே 
in FAST-DT1 as discussed in the previous section, the delay 
difference between FAST-DT1 and baseline is negligible. 
With the introduction of additional pipeline stages, FAST-
DT2 achieves 22.2% reduction in the critical path delay 
compared to the baseline architecture while still maintaining 
lesser area utilization. While the critical path delay of the 
baseline architecture can be reduced with additional pipeline 
stages in the adder tree, this will further increase its area 
utilization, which at present, is already higher than FAST-DT1 
and FAST-DT2. The area-product of the FAST-DT2 
architecture is 22.8% lesser than the baseline architecture. The 
proposed FAST-DT2 architecture has a higher clock operating 
frequency and hence it consumes more power. However, the 
energy per pixel is only about 1.6% higher than the baseline. 
Hence, the proposed FAST-DT2 architecture offers the 
highest area-time benefits without compromising on energy 
efficiency compared to existing approaches. The last column 
of Table 2 shows that the baseline and FAST-DT1 have 
similar throughput (where FAST-DT1 requires lesser area and 
power), while FAST-DT2 is capable of processing images 
with resolution of 1280x720 at over 700 frames per second.  

VI. CONCLUSION 

Area-time analysis and synthesis results of FAST-DT1 
confirm that the proposed transposed data-path structure for 
FAST corner detector leads to lesser registers with the use of a 
smaller window buffer for computing partial corner score 
values in parallel. The use of two’s complement adders to 
simultaneously compute the corner scores and members leads 
to further area savings. These area optimizations are achieved 

without notable difference in critical path delay compared to 
the baseline architecture. By incorporating an additional 
pipeline stage in the adder trees, the proposed FAST-DT2 
architecture resulted in over 22% area-time reduction 
compared to the baseline architecture, with similar energy 
efficiency. 
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