
Rapid Detection of RowHammer Attacks using
Dynamic Skewed Hash Tree

Saru Vig
Siew-Kei Lam

Nanyang Technological University, Singapore

Sarani Bhattacharya
Debdeep Mukhopadhyay

Indian Institute of Technology, Kharagpur, India

ABSTRACT
RowHammer attacks pose a security threat to DRAM chips
by causing bit-flips in sensitive memory regions. We propose
a technique that combines a sliding window protocol and
a dynamic integrity tree to rapidly detect multiple bit-flips
caused by RowHammer attacks. Sliding window protocol
monitors the frequent accesses made to the same bank in
short intervals to identify the vulnerable rows. Dynamic
integrity tree relies on SHA-3 Keccak hash function while
maintaining the minimal number of vulnerable rows at any
particular time to enable detection of bit flips. We demon-
strate the effectiveness of the proposed approach by per-
forming RowHammer attacks using the prime and probe
method with a DDR3 DRAM. We show that the dynamic tree
structure only needs to maintain a small number of vulnera-
ble rows at a time, thus notably reducing the height of the
integrity tree to enable rapid detection of the bit-flips.

CCS CONCEPTS
• Security and privacy → Hardware-based security proto-
cols;

KEYWORDS
RowHammer, integrity tree, bit-flip detection

ACM Reference Format:
Saru Vig, Siew-Kei Lam, Sarani Bhattacharya, andDebdeepMukhopad-
hyay . 2018. Rapid Detection of RowHammer Attacks using Dy-
namic Skewed Hash Tree. In HASP ’18: Hardware and Architectural
Support for Security and Privacy, June 2, 2018, Los Angeles, CA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3214292.
3214299

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HASP ’18, June 2, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6500-0/18/06.
https://doi.org/10.1145/3214292.3214299

1 INTRODUCTION
The advances in process technology have led to smaller Dy-
namic Random Access Memory (DRAM) cells, making them
more vulnerable to disturbance, a phenomenon where the
DRAM cells in adjacent rows interfere with each other [10].
When the interference effects are strong enough, the bits in
the memory cells may flip. Such vulnerability exists in recent
sub 40-nmDRAM chips and is expected to increase as the fea-
ture size continues to shrink [15]. This phenomenon poses
a security threat in modern DRAM chips as attackers can
repeatedly open (i.e. activate) or close (i.e. precharge) DRAM
rows in the same memory bank to induce bit flips in the
adjacent rows. This attack, which is known as RowHammer-
ing, has been demonstrated on commercial systems with the
purpose of inferring cryptographic keys [3], data integrity
violations [6], and inserting malicious codes [14].

Existing methods for mitigating RowHammer attacks can
be grouped into software-based solutions [1, 10, 11] and
hardware-based solutions [7, 9]. The latter typically intro-
duces additional hardware resources to maintain the state of
the DRAM rows that are accessed (e.g. rows that are repeat-
edly activated). The existing software and hardware solutions
are based on early or selective refreshing of rows (regardless
of whether memory errors have occurred). This incurs un-
necessary power and performance overhead as there might
be many cases when false positive alarms are raised. Refresh
operations also increase the latency of read operations which
can negatively impact the throughput of a system [11].

In this paper, we propose a low-overhead technique to de-
tect bit-flips caused by RowHammering as early as possible
in order to prevent the attacker from achieving a malicious
outcome e.g. data tampering, code injection, or inferring se-
cret key. The proposed technique employs a sliding window
mechanism to identify vulnerable rows that are accessed fre-
quently within a certain time interval. The size of the sliding
window is determined by the activation and refresh interval
of the DRAM. Rows of the same bank must be opened and
closed repeatedly within this window frame in order to cause
a bit-flip [10]. The newly identified vulnerable rows in the
sliding window are dynamically placed in an integrity tree
while previous rows in the tree that are no longer vulnerable
are removed. In order to evaluate the effectiveness of the

https://doi.org/10.1145/3214292.3214299
https://doi.org/10.1145/3214292.3214299
https://doi.org/10.1145/3214292.3214299

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Vig et al.

proposed approach, experiments are performed on different
target processors with DDR3 DRAM consisting of 16 banks
each with 215 rows and a retention time of 64 ms. The results
show that the combination of sliding window mechanism
and dynamic tree structure limits the height of the integrity
tree to at most 4, thus enabling rapid detection of bit-flips.
This paper is organized as follows: Section II discusses

related work and highlights the main contributions of our
work. Section III presents the preliminaries and Section IV
provides a detailed description of the proposed method. The
experimental results are shown in Section V and we conclude
the paper in Section VI.

2 RELATEDWORK
It was first demonstrated in [8], that persistent and continu-
ous accesses to DRAM cells, results in the neighboring cells
of the accessed DRAM rows to electrically interact with each
other. [14] has successfully performed the attack on Google’s
Native Client Sandbox. This is achieved with variation of the
attack known as double sided RowHammer, which repeatedly
activates the adjacent two rows to induce bit flips in the mid-
dle row. The attack enabled the adversary to insert malicious
code and gain privileged access to the system call of the op-
erating system. The authors in [5] implemented a JavaScript
to induce faults remotely by exploiting the RowHammer bug.
The authors in [3] developed a software driven fault attack
by combining RowHammer with timing analysis to tam-
per with the cryptographic keys. In [17], authors show that
the traditional RowHammer exploitation techniques do not
work on mobile devices. The paper illustrates a deterministic
RowHammer attack named DRAMMER on Android/ARM
devices. They exploit uses memory templating technique to
probe memory for flippable bits.
There has been various countermeasures of RowHam-

mer attacks proposed in literature. Seven potential system
level mitigation techniques were proposed in [8]. Among the
proposed solutions, Probabilistic Adjacent Row Activation
(PARA) adds least overhead to the memory controller. The
memory controller in PARA decides to refresh its adjacent
rows with probability p (typically 1/2). The memory con-
troller being probabilistic in its nature, the approach does not
require any complex data structure for counting the num-
ber of row activations. It has been proposed in the earlier
researches that doubling refresh rate [8] and removing ac-
cess to clflush instruction [14] are potential prevention
techniques to RowHammer. But both countermeasures have
been proved to be ineffective in [1]. The paper reports bit flip
in spite of having refresh interval as low as 16ms without
using the clflush instruction.

The paper also suggests a two-step software based protec-
tion mechanism called ANVIL. ANVIL constantly monitors

the LLC cache misses from the hardware performance coun-
ters and examines if the number of cache misses cross the
predetermined threshold. If the cache misses over a time in-
terval is observed to be significantly high, then the software
module triggers sampling of the DRAM accesses. ANVIL
selectively performs a row refresh if the software module
detects repeated accesses to particular rows in the same bank.
Our work is also based on keeping tabs on which rows are
being accessed frequently but instead of being over cautious
and always refreshing these rows we perform verification to
confirm weather the attack has even occurred or not before
raising an alarm.
There are several counter measures against data tamper-

ing in external memories that make use of memory integrity
trees. Integrity trees along with some form of encryption
are being used as a preventive measure against bus tamper-
ing attacks such as snooping, spoofing, replay attacks [4].
Although, a tree structure is commonly used for memory
authentication, to the best of our knowledge there has been
no reported approach that uses integrity trees to tackle
RowHammer attacks.

2.1 Main Contributions
The contributions of our work are as follows:
• This is the first work that employs a dynamic integrity
tree approach for detecting multiple bit-flips caused
by RowHammering. Our work differs from existing
work [1, 10, 11] which prevents bit-flips by refreshing
vulnerable rows when a RowHammering threshold is
met (even though no bit-flips are induced). As such,
our method avoids unnecessary DRAM refresh cycles
which reduces the performance and power overhead.
• A sliding window mechanism is introduced to identify
vulnerable rows based on the activation interval of
DRAM. This effectively reduces the number of vulner-
able rows that need to be maintained by the tree.
• A dynamic integrity tree structure is proposed to en-
able newly detected vulnerable rows to be dynamically
inserted into the tree, while rows that are no longer a
concern are removed.
• WeperformRowHammering on processors with DDR3
DRAM to show that the combination of the sliding
window mechanism and dynamic tree structure effec-
tively constrains the height of the tree, which enables
low-overhead detection of bit-flips.

3 PRELIMINARIES
RowHammering relies on the property of high bank locality
i.e. repeatedly opening and closing of DRAM rows from the
same bank within one refresh cycle (64 ms in the case of
a DDR3 DRAM used in our experiments). When a row is

Rapid Detection of RowHammer Attacks using Dynamic Skewed Hash Tree HASP ’18, June 2, 2018, Los Angeles, CA, USA

opened (or activated), the contents of the row are transferred
from the DRAM to the row buffer. All subsequent requests
made to the same row are read from the buffer. To close
the row, another row from the same bank would have to be
accessed where its data is transferred to the row buffer and
the old data is evicted.

Figure 1: Pseudo Code for RowHammer. clflush in-
struction flushes the row from the cache. In the above
code, X and Y become the aggressor rows and their
neighboring rows i.e. X+1, X-1, Y+1, Y-1 become the vic-
tim rows.

The authors in [10] utilized the code in Fig. 1 to perform
RowHammering by repeatedly opening and closing the rows
within a single refresh cycle to cause memory disturbance
errors. In particular, the repeated charging and discharging
of row cells causes electronic disturbance which could result
in bit-flips in the DRAM cells of the adjoining rows. We will
use the following nomenclature in the paper:
• The row which is being repeatedly accessed is denoted
as the aggressor row.
• The adjoining vulnerable two rows where the flips
occur are called the victim rows.

4 PROPOSED METHOD
4.1 Framework
In this paper, we developed a low overhead and cost effective
solution for detecting bit-flips caused by RowHammer at-
tacks by combining dynamic tree construction and a sliding
window protocol. We present an overview of the proposed
framework in Fig. 2. The framework does not require special-
ized hardware to detect faults in memory due to the repeated
accesses to DRAM. It only requires a Memory Controller
(MC) that consists of a Checker and an on-chip memory. The
on-chip memory is required to store the Root Hash andwe as-
sume that the on-chip storage is safe and cannot be tampered
with. The Checker employs a sliding window mechanism
to closely monitor the memory accesses made to different
DRAM rows.

4.1.1 Detecting vulnerable rows. The detection procedure
requires a log of memory accesses to DRAM banks which
can be easily acquired at runtime. The Checker utilizes a low
overhead sliding window to monitor DRAM accesses within
a fixed window frame, in order to determine the memory
accesses which can potentially cause bit flips. Based on the
memory addresses which are accessed, the potentially vul-
nerable rows are inserted in the dynamic tree. Considering
the nature of bits flips induced by RowHammer, the adjoin-
ing rows of the aggressor rows (in the same bank, that are
opened and closed more than once) are marked as vulnerable
rows since they are likely to suffer from bit-flips.
More generally, the vulnerability criterion for rows can

be formulated as: at least X DRAM accesses made to the
neighboring rows from the same bank within window frame
of size p. The MC will calculate the hashes of the victim rows
and insert them to the integrity tree as its leaf nodes. Fig. 3
illustrates an example a dynamic tree that is incrementally
constructed. For this example, the window frame size is cho-
sen to be 10 based on our empirical results which is discussed
later. In addition, the respective nodes for DRAM rows that
are no longer vulnerable are periodically removed from the
tree. In particular, when the aggressor row exits the window
frame, the corresponding victim rows will be automatically
removed from the tree.

4.1.2 Deciding on the window frame size. In practice, the
window frame size is determined based on the activation
and refresh interval of the DRAM. In order to determine the
window frame size, the time taken for one DRAM access
after performing clflush instruction is first calculated and
the number of DRAM accesses within the refresh interval
that is required for hammering to be successful is determined.
Based on experimental results, activations of the same row
within an interval greater than 500ns for a refresh interval
of 64 ms will not cause sufficient loss of charge to result in
a disturbance [10]. Thus, the window size should be able
to cover all DRAM accesses within 500ns. This enables us
to determine the window size and only activations that lie
within this window frame need to be monitored.

4.1.3 ReadNCheck. Detection of bit-flips is achieved by
the MC using the ReadNCheck function. In the ReadNCheck
function, we perform a recursive procedure to re-calculate
the hash at all the levels of the tree and match them with the
one already stored in the tree. This process repeats till the
ROOT HASH is verified with the Root Hash stored on-chip.
If the hash at each level matches, this means the row hasn’t
been altered and is safe. It can then be passed to the processor
for processing. If a bit has flipped a mismatch will occur at
the very first level. Hence, when an attack occurs, a warning
signal is raised as soon as the first level of verification ends.

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Vig et al.

The ReadNCheck function is performed on the victim rows
in the integrity tree on two occasions:
• When a victim row that has been placed in the tree is
accessed. All read access made to nodes of the tree are
verified by performing a ReadNCheck before passing
to the processor.
• When a victim rows is removed from the tree. This
is done to make sure that no bit-flip goes undetected,
even if the victim rows were not accessed.

Thus, the maximum time interval between an actual bit flip
and its detection is X access, the window frame size. It could
be detected if that respective row is accessed while it is part
of the tree.

Figure 2: Proposed Framework

4.2 Tree Representation
In this subsection, we will discuss the representation of the
integrity tree. Let ni be the ith node of the tree and pi , si
denote the parent and sibling of ni respectively. Here pi
stores the parent node number and si stores the sibling node
number. The parent and sibling node numbers are required
as the tree structure changes dynamically during runtime.
Note that this differs from a typical balanced integrity tree
where the position of the parent can be easily calculated
using the position of its child node [4]. Thus we need to
store the parent and sibling node number in the tree node.
Fig. 4 shows how the tree is organized in the form of nodes
and subtrees. Each row is represented by one leaf node.

A SUB_TREE consists of two leaf nodes and their parent.
At any one time, we add/remove a single subtree rather than a
single node (i.e. two adjoining neighbors of the the aggressor
rows, which form the leaf nodes of the SUB_TREE). The root
of the tree is also stored on-chip as ROOT HASH. We assume
that anything stored on-chip is safe and cannot be tampered
with. Higher levels of the tree are created by recursively

hashing the nodes on the level below. The additional fields
of parent and sibling are required to perform the add and
remove procedure described in Algorithm 2. The tree may
have a skewed structure as can be seen in Fig. 4, as it depends
of the number of rows considered vulnerable inside awindow
frame at any time.

4.2.1 Hash function. We use SHA3-256 (Keccak[512] (M ||
01, 256)) as the hash algorithm. The output of this function is
256 bits for any given input. These hashes form the nodes of
the tree. SHA-3 is capable of detectingmultiple bit flips. There
have been reported caseswhen RowHammer has successfully
flippedmultiple bits in a single row [9]. SHA3 implements the
Keccak function which comprises of a set of 7 permutation
functions. A normal SHA3 function implements 24 rounds
of these permutation. Since our main motive here is only to
avoid inner collision attacks, performing 11 rounds of Keccak
will be sufficient to provide the required security [2]. This
further helps to reduce the overhead of detecting bit-flips.

4.3 Dynamic Tree Construction
The algorithm used for dynamically adding and removing
subtrees, which has been adapted from [13], is shown in
Algorithm 1. In the RowHammer attack, a bit flip occurs
when repeated access to the rows of the same bank within a
short span cause it to lose enough charge.

4.3.1 Creating the tree. For our tree construction, when-
ever a bank is accessed more than X times within this win-
dow frame of size p, we go into cautious mode. The X rows
which were accessed become the aggressor rows. Hashes
of the two vulnerable neighbors of the aggressor rows, the
victim rows are placed on the tree. A new SUB_TREE will be
created where each leaf node of the SUB_TREE is the hash
value of the one victim row. The parent node is the hash of
the concatenated values of its children nodes. This process
is repeated till we obtain a single root node (ROOT HASH)
which is stored on the chip. To achieve this, we monitor all
accesses made to the memory with the moving window pro-
tocol. Thus, whenever there is memory read request to any
victim row, it will have to traverse the tree to be processed.
The request will go through the Checker in the MC. It will
perform ReadNCheck for verification before sending the data
to the processor.

4.3.2 Updating the tree. Eventually when the aggressor
rows exits the window frame, the respective victim rows can
be considered safe and are removed from the tree. The same
process of ReadNCheck will be performed on every exit as
well. Thus, bit flips will be detected whenever a request to
access the row is made by the processor while it is in the
tree or when it is removed from the tree, whichever occurs
first. Any addition and removal of nodes from a tree will

Rapid Detection of RowHammer Attacks using Dynamic Skewed Hash Tree HASP ’18, June 2, 2018, Los Angeles, CA, USA

Figure 3: Illustration of the proposed method with a sliding window and dynamic tree construction

ROOT
HASH

N10

N8

N9

N7

N2

N3

N1 N5

N6

N4

SUB_TREE_0

SUB_TREE_2
SUB_TREE_1

Hash2|Node2|Parent2|Sibling2

Figure 4: Proposed hash integrity tree structure

entail updating the parents of the tree till the ROOT HASH
as described in Algorithm 2. The overhead for this has been
calculated for different processors and discussed later. The
sliding window protocol used is described in Algorithm 3. On
each access, the frame moves forward and the head and tail
of the window are checked. The head is checked for adding
rows to the tree and the tail for removing them.
By maintaining a tree of hashes whose root is stored se-

curely on-chip rather than a hash table we are making sure
that the hashes stored are also safe and will be able to identify
any attack on the hash functions as well. Any change will be

Algorithm 1: Dynamic Tree

begin
if read_request(addr) then

if addr.vulnerable 1̄ then
ReadNCheck(addr)

else
Load(addr)
Check addr within Window Frame

end
end

end

eventually be detected either during verifications performed
at each level or during the final check with the hash on-chip.

4.3.3 Implementation Example. In the example shown in
Fig. 3, we have assumed X = 2 and p = 10. In the first window
frame, we observe that two rows from Bank 3 have been
accessed, and hence their neighboring rows are considered
to be vulnerable. Each aggressor row will form a SUB_TREE’s
consisting of its two victim row as leaves. Thus, in this ex-
ample we have two SUB_TREE’s for bank 3. As the sliding
window progresses, the count for Bank 1 increase to 2. Thus,
we add two more subtrees to the tree. Moving on, the aggres-
sor row from Bank 3 exits the window, and thus the victim
rows belonging to Bank 3 are removed from the tree as the
activations were not frequent enough to have caused distur-
bance. As a precaution, even while removing the rows from
the tree, the rows are verified to check for any bit-flips.

5 RESULTS
We have conducted our experiments on four different Intel
processors running Windows 7 to evaluate the effectiveness

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Vig et al.

Algorithm 2: Add and Remove

begin
if Add to tree then

Q, P, R : (pointers to Nodes)
R← create new (sub_tree)
P← find last added (sub_tree)
if P.sibling == 0 then

P.sibling← R
else

Q← create new parent node
Q.child← P
Q.child← R

end
Recalculate Parent Hashes till ROOT HASH

end
if Remove from tree then

R : (subtree to be removed)
Check for any bit flip
if not tampered then

exchange(R.parent,R.sibling)
free memory for R
Recalculate Parent Hashes till ROOT HASH

end
end

end

Algorithm 3:Window Frame

begin
H, T : pointers to head and tail of frame respectively;
T =H+p
if memory request from processor then

H← H+1
T← T+1
Check (T - 1) if present in tree
if true then

H.vulnerable = 0
remove_from_tree(T-1)

end
Check H with against vulnerability criterion
if true then

H.vulnerable = 1
add_to_tree(&(H+1), &(H-1))

end
end

end

of our approach. Memory access patterns that have previ-
ously caused successful RowHammer attacks on a DDR3
DRAM memory with a retention time of 64 ms were studied.

(a)

(b)

(c)

Figure 5: Performance evaluation with memory log of
different sizes

We examined the memory logs to identify patterns exhibit-
ing bank locality and frequent accesses to the same row.
In order to infer which access maps to which DRAM bank,
the corresponding row mappings of the accesses are per-
formed using the pagemap utility. Given a virtual address of
an access, the pagemap is consulted with the corresponding

Rapid Detection of RowHammer Attacks using Dynamic Skewed Hash Tree HASP ’18, June 2, 2018, Los Angeles, CA, USA

Table 1: Timing Overhead Results for Tree Creation and Updating

Parameters Processor 1 Processor 2 Processor 3 Processor 4
Clock Frequency 3.5 GHz 2.4 GHz 3.6 GHz 2.7 GHz

Cache Size 12 MB 15 MB 8 MB 4 MB
Memory Type DDR3 DDR3 DDR3 DDR3
Memory Size 256 GB 64 GB 8 MB 8 MB

Operating System Windows 7 Windows 7 Windows 7 Windows 7
Repetitions (X) 2 2 2 2
Window Size (p) 10 access 10 access 10 access 10 access
Height of tree 3-4 3-4 3-4 3-4

Avg. no. of leaf nodes 8 8 8 8
Time to make a sub tree 1.91 ms 1.11 ms 1.50 ms 1 ms
Time to add/remove node
(depends on tree height) 1.99-5.9 ms 1.28-3.8 ms 1.62-4.97 ms 1.07-4.22 ms

page number as calculated from the virtual address and the
pagemap returns the frame number for that corresponding
page. The frame number along with the lower bits of offset
from the virtual address results in the physical address of
the corresponding access request. There are a few works in
the literature [12] that successfully reverse engineered the
DRAM channel, rank, bank, row and column mappings from
these physical address bits. We follow the reverse engineered
equations tabulated in [12] to determine the DRAM channel,
rank, bank mappings of particular the memory accesses.

5.1 Choosing X and p
We first perform experiments to identify suitable size for
the sliding window. This is achieved by calculating the time
to perform one DRAM access by the processor. Memory
Controller issues the command to open/close rows. The min-
imum interval between activations to the same row is termed
as trc , row cycle time. trc , serves as the bottleneck for ac-
cessing a row as the maximum possible frequency is once
per trc . The maximum delay between activations to cause a
disturbance was calculated to be 500 ns for DDR3 DRAM [8].
trc is for processors is typically 50ms or greater [16]. Thus,
the minimum size of a window frame can be reported as

p =
500
trc

(1)

Thus, for further analysis, we performed experiments with
varying window frame size p as 4, 5, 6, 8, 10 and number of
activations of the same row within the window frame (i.e.
repetition) X as 2, 3, and 4. Experiments were conducted on
three different logs with different sizes. Fig. 5 shows the total
number of rows that would be considered vulnerable based
on the criterion described in Section 4.3 during the entire
execution of an application. These experiments were thus

used to calculate the average number of rows that would
become vulnerable. As can be seen, it is a high number and
selectively refreshing them without confirming presence of
an error will cause a high overhead. Thus, a rapid detection
method will be able to help to raise a warning only when an
attack has been confirmed. It can be observed that the maxi-
mum vulnerable rows occur when X = 2 and p = 10 which
makes sense intuitively. Based on this, we performed further
timing experiments and managed to achieve a considerably
low detection overhead as discussed later.

5.2 Dynamic Tree attributes
Although experiments conducted with X = 2 and p = 10 cause
very frequent additions/removals from the tree, it also en-
sures that all vulnerable rows that can be potentially flipped
are considered for verification. The experiments revealed
that at any given time, the average number of aggressor rows
in a single frame is 4 for a any given time, with the maximum
being 8. Thus, the average number of SUB_TREE’s will be 4
i.e. one subtree (consisting of two neighboring victim rows
as its leaves) pertaining to each aggressor row. This limits
the height range of the tree from 3-4 levels. The minimum
number of SUB_TREE’s at any given time is 2 (4 neighboring
rows) and the maximum number of SUB_TREE’s is 8 (16
neighboring rows). These results are shown in Table 1.

5.3 Memory and Timing Overhead
The memory overhead of having a dynamic tree depends on
the number of leaf nodes present (i.e. vulnerable rows) at
any given time. For a tree with n leaf nodes the overhead is
calculated to be in bits as:

MDT = (256 + 2 ∗ log2 n) ∗ (2 ∗ n − 1) (2)

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Vig et al.

This is the amount of memory needed to store the hashes
and the remaining nodes of the tree. As discussed earlier, n
varies from 4-16. Due to the compact tree structure and rapid
tree construction, the proposed method lends itself well for
detecting bit-flips due to RowHammer. As reported in [1], the
shortest recorded time for a flip to occur is 15 ms, which is
longer than the time to adjust the hash tree before the DRAM
refreshes. Thus any flip can be successfully detected as the
sequences of events leading to the flip ensures that the victim
row is placed on the tree. These timing results are shown in
Table 1. The total time taken to create a SUB_TREE in all the
four cases is ≤ 2ms . Adding/Removing nodes from the tree
have a overhead between 2-6 ms depending on which level
of tree the update occurs. With the window frame size as 10,
we can calculate the maximum interval between bit flip and
detection to be 10 DRAM accesses. In the worst case scenario
when the row where the flip has occurred is not accessed,
as soon the row exits the tree (i.e when the window moves
past it’s aggressor row) the ReadNCheck procedure will be
performed and the flip will be detected.
It is worth mentioning here that this additional latency

of accessing the memory rows after tree traversal and ver-
ification caused by ReadNCheck function pertains only to
the victim rows that are accessed while they are a part of the
tree. The aggressor rows and other row access are still being
read with the same frequency as under normal conditions.
Thus, additional overhead of row access time is limited to
4-16 memory rows of the entire memory at any given time.

6 CONCLUSIONS
This paper proposes a framework for rapid detection of multi-
ple bit-flips due to RowHammer using dynamic integrity tree.
We have implemented a slidingwindow that effectively limits
the height of the tree for maintaining vulnerable rows. Vul-
nerable memory rows are dynamically added and removed
from the tree based on a vulnerability criterion. The crite-
rion and size of the sliding window can be fixed to attain
maximum security. The node structure of the tree and the
hash computations enables multiple bit-flips in memory row
to be be detected. Experimental results confirm that the pro-
posed framework enables rapid detection of bit-flips due to
RowHammer attacks.

7 ACKNOWLEDGEMENT
The research described in this paper has been supported
by the Academic Research Fund (AcRF) Tier1, Ministry of
Education, Singapore under grant number RG166/15.

REFERENCES
[1] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-

parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL:

Software-based protection against next-generation rowhammer at-
tacks. ACM SIGPLAN Notices 51, 4 (2016), 743–755.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
2009. Keccak sponge function family main document. Submission to
NIST (Round 2) 3, 30 (2009).

[3] Sarani Bhattacharya and Debdeep Mukhopadhyay. 2016. Curious case
of rowhammer: flipping secret exponent bits using timing analysis.
In International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 602–624.

[4] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B Lee,
Nachiketh Potlapally, and Lionel Torres. 2009. Hardware mechanisms
for memory authentication: A survey of existing techniques and en-
gines. In Transactions on Computational Science IV. Springer, 1–22.

[5] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016.
Rowhammer. js: A remote software-induced fault attack in javascript.
In Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 300–321.

[6] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. (2017).

[7] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. 2015. Ar-
chitectural support for mitigating row hammering in DRAMmemories.
IEEE Computer Architecture Letters 14, 1 (2015), 9–12.

[8] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA,
June 14-18, 2014. 361–372. https://doi.org/10.1109/ISCA.2014.6853210

[9] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In ACM SIGARCH Computer Ar-
chitecture News, Vol. 42. IEEE Press, 361–372.

[10] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2016.
RowHammer: Reliability Analysis and Security Implications. arXiv
preprint arXiv:1603.00747 (2016).

[11] Prashant Nair, Chia-Chen Chou, and Moinuddin K Qureshi. 2013. A
case for refresh pausing in DRAM memory systems. In High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on. IEEE, 627–638.

[12] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. 2016. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In 25th USENIX Security Symposium, USENIX Secu-
rity 16, Austin, TX, USA, August 10-12, 2016., Thorsten Holz and Stefan
Savage (Eds.). USENIX Association, 565–581. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/pessl

[13] Steven Pigeon and Yoshua Bengio. 1998. A memory-efficient adaptive
Huffman coding algorithm for very large sets of symbols. In Data
Compression Conference, 1998. DCC’98. Proceedings. IEEE, 568.

[14] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM
rowhammer bug to gain kernel privileges. Black Hat (2015).

[15] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. 2017.
Counter-based tree structure for row hammering mitigation in DRAM.
IEEE Computer Architecture Letters 16, 1 (2017), 18–21.

[16] DDR3 SDRAM Specification. 2010. Jesd79.
[17] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel

Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. 1675–1689.

https://doi.org/10.1109/ISCA.2014.6853210
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl

	Abstract
	1 Introduction
	2 Related Work
	2.1 Main Contributions

	3 Preliminaries
	4 Proposed Method
	4.1 Framework
	4.2 Tree Representation
	4.3 Dynamic Tree Construction

	5 Results
	5.1 Choosing X and p
	5.2 Dynamic Tree attributes
	5.3 Memory and Timing Overhead

	6 Conclusions
	7 Acknowledgement
	References

