
Dynamic Skewed Tree for Fast Memory Integrity
Verification

Saru Vig, Guiyuan Jiang and Siew-Kei Lam

School of Computer Science and Engineering, Nanyang Technological University, Singapore

Abstract—Memory authentication techniques often employ an
integrity tree as a countermeasure against replay, spoofing and
splicing attacks. However, the balanced memory integrity trees
used in existing approaches lead to excessive memory access
overheads for runtime verification. In this paper, we propose
a framework to dynamically construct a customized integrity
tree based on the data access patterns to reduce the overhead
of runtime verification. The proposed framework can adapt the
memory integrity tree structure at runtime such that the nodes
that correspond to frequently accessed data are placed closer to
the root. We validated the effectiveness of our approach on the
Altera NIOS II processor with an external DRAM. Experimental
results based on applications from widely used CHStone and SNU
Real-Time benchmarks demonstrate that the proposed approach
can lead to an average performance gain of 30% compared to
the conventional means of using balanced memory integrity trees.
In addition, to preserve data confidentiality, we implemented the
encryption/decryption operations using custom instructions on
the NIOS II processor to notably reduce the overall overhead of
memory security.

I. INTRODUCTION

Commercial processor-level security countermeasures typi-
cally define notions of trust zones or boundaries (or security
perimeters) across the various on-chip hardware resources.
However the protection schemes in current trusted computing
platforms cannot extend fully beyond the processor core to
guarantee security in external third party memories. This
enables adversaries to mount active attacks on memories
such as cold-boot attacks by exploiting memory remanence
properties, passive bus snooping to infer secret cryptographic
keys by monitoring data transfers between the processor and
memory [1], or physical bus attacks. This is a major concern
as the motive of almost all attacks is leakage or modification
of information, making memory an obvious target.

A common attack to challenge the integrity of the content
stored in external memories is through bus attacks. Such
attacks replace external memory accesses with malicious con-
tent. Typical bus attacks are splicing, spoofing, and replay [2].
Hence, most memory protection schemes consists of some
form of encryption and an integrity tree. Integrity tree based
techniques split the memory into equal sized blocks which
form the leaf nodes of the tree. The remaining nodes in the tree
are created by recursively applying a primitive authentication
function over the memory blocks until a single root node is
left. The root is securely stored on chip and it represents
the present state of the system. Thus any tampering can be

The research described in this paper has been supported by the Academic
Research Fund (AcRF) Tier1, Ministry of Education, Singapore under grant
number RG166/15.

detected if the root value does not match with the value
stored on chip. For a leaf node to be verified and passed
to the processor, authentication must be performed on all
tree levels till the root. This mechanism has considerable
time overhead due to accessing nodes on all tree levels for
each memory access and thus utilizes the maximum fraction
of energy consumed by embedded processors in memory
intensive applications. This is often infeasible for embedded
systems due to their tight energy constraints and performance
requirements. As such, securing memory in embedded systems
has been a long standing issue in trusted system design.

Prevalent techniques for of runtime memory integrity veri-
fication rely on a fully balanced memory integrity tree which
suffers from significant performance overheads due to the need
to traverse all levels of the tree for each memory access. In this
paper, we propose a framework to construct dynamic skewed
integrity tree based on the runtime memory access patterns
of the application. In particular, the memory integrity tree
will be dynamically restructured such that the more frequently
accessed memory blocks lie in the shorter paths to the root.
This will significantly reduce the number of verification steps
for the frequently accessed memory blocks, leading to overall
reduction in the overhead for memory authentication.

We evaluated the proposed approach for runtime data in-
tegrity verification on Altera NIOS II processor with external
DRAM that stores the memory integrity tree. The approach
can be adopted for code integrity verification as well. Using
applications from well-known benchmarks, we show that an
average runtime improvement of 30% can be achieved over
conventional methods that use a balanced memory integrity
tree. This clearly demonstrates that the overhead savings for
runtime integrity verification of our approach far exceeds
the processing overhead for constructing and maintaining the
dynamic memory integrity tree. In addition, we implemented
the AES algorithm for encryption/decryption using custom
instructions on the NIOS II processor. This resulted in an
additional 10x speedup, which further alleviates the bottle-
neck of runtime memory integrity verification. To the best
of our knowledge, this is the first work to demonstrate the
effectiveness of using dynamic memory integrity trees for
memory authentication on an off-the-shelf platform using
realistic applications.

This paper is organized as follows: Section II discusses re-
lated work. Section III describes the threat model and Section
IV introduces the proposed memory integrity tree structure.
Section V presents the proposed framework for constructing
and maintaining the dynamic skewed memory integrity tree,
and experimental results are shown in Section VI. We conclude
the paper in Section VII.

II. RELATED WORK

Memory protection from replay, spoofing and splicing at-
tacks can be achieved through runtime integrity verification
[2]. An integrity tree is vital to such mechanisms due to
the limited on-chip storage. Authentication methods like hash
function, MAC, Block-level AREA are used to realize the
integrity trees [3]. The root value of the tree is stored on chip
and is assumed to be safe and resistant to tampering. Existing
integrity trees include HASH trees, PAT trees and TEC tree [3].
A number of commercial CPUs like IBM Secure Blue [4],
and XOM architecture [5] processor also make use of such
integrity trees.

Intel’s SGX incorporates a memory encryption engine [6]
that uses an integrity tree with a tweaked version of AES
to provide authentication. The PoinsonIvy processor uses
integrity trees with speculative execution of instructions [7].
AEGIS, which provides protection against both software and
physical attacks employs a balanced hash tree structure for
its memory protection [8]. TEC-tree and Merkle trees, both
use fully balanced integrity trees with different authentication
techniques [3]. Merkle trees process data in batches to save
on-chip storage and the authentication procedure of TEC-tree
is parallelizable as each node is unique [9].

All of the above-mentioned schemes make use of a fully
balanced memory integrity tree structure and they do not take
advantage of the memory access patterns to reduce the verifi-
cation overheads. As such, the memory protection schemes are
often computationally intensive as they account for excessive
memory accesses [10]. In [11], a skewed memory integrity
tree that is based on the frequency of memory accesses is
introduced for run-time verification but the tree is constructed
off-line and remains static throughout the operation. Hence,
this method is only applicable to scenarios where the memory
access patterns of the applications are known beforehand,
which is highly unlikely in practical applications.

A. Main Contribution of this Work

The main contribution of this paper is a framework that
dynamically restructure the memory integrity tree based on the
runtime memory access patterns. In particular, our approach
places data elements with the same memory access frequency
together in a single node/set, leading to efficient tree storage.
As the memory access patterns change, nodes in the tree are
repositioned based on their frequency of access. Nodes with
higher frequency are placed closer to the root. This adap-
tive approach for creating a skewed tree leads to significant
overhead reduction compared to the balanced tree approaches
in [3]. In addition, unlike [11] the proposed method do not
assume that the memory access patterns are known a-priori.
We demonstrate the effectiveness of the proposed approach for
runtime verification on the Altera NIOS II processor with an
external DRAM. The AES encryption has been implemented
using custom instructions to further accelerate the runtime
verification process.

III. THREAT MODEL

Similar to previous works, our threat model assumes that
anything stored on chip is secure and cannot be tampered with.
We are concerned with bus attacks that tamper the memory
and/or processor bus and thus are able to observe and inject

manipulated data. Side channel and leakage attacks are beyond
the cope of this work. Typical bus attacks are [3] :

• Spoofing: Attacker exchanges a memory block with a
tampered one.

• Splicing: Attacker replaces the memory block at address
A with a memory block at address B where A 6= B.

• Replay Attacks: Attacker records data at an address and
inserts it at the same address at a later point in time. Thus
the present value of the data is replaced by an older value.

IV. PROPOSED INTEGRITY TREE REPRESENTATION

The proposed memory integrity tree structure uses nodes as
sets that store a group of memory blocks rather than individual
memory block (as adopted in conventional approaches [9]).
Each node (or set) will store all the memory locations that
have the same frequency of access. Therefore, unlike the
previous methods, the number of nodes in the proposed
memory integrity tree is equal to the number of memory access
frequencies (instead of number of memory locations). Clearly,
as the memory access patterns change during runtime, the tree
must be dynamically restructured.

The memory elements are placed as the leaf nodes on the
lowest level of any tree branch, in the form of data chunks
(DC). Let ni denote the ith node of the tree. pi, si, LRi, fi
denote the parent, sibling, side, frequency of ni respectively.
pi stores the node number of the parent and si stores the
node number of the sibling of ni. LRi denotes whether the
node is a left child or a right child to its parent. fi denotes the
frequency of access for the elements stored in ni. NEi denotes
the number of data elements in ni. The weight of ni is denoted
by wi = NEi ∗fi. Fig. 1 shows how the contents of the nodes
in the proposed memory integrity tree are organized, and the
format of the data and counter chunks. The (Node|Weight)
concatenation in the counter and data chunks serves as the
nonce (number use only once) as is unique to each node.
The remaining nodes are formed by recursively combining the
weights and are known as counter chunks (CC). The DC’s and
CC’s are all encrypted using AES algorithm with a symmetric
key cipher operating in Electronic Code Book Mode. We
will explain the tree structure for the following data elements
{0, 1, 1, 5, 6, 8, 9} of the memory integrity tree as shown in
Fig. 1.

4,7|0|0|0|1|11

1

1,5,9,8|1|3|0|2|4

2

4,3|1|2|1|3|7

3

0,1|3|5|0|4|4

4

6|3|4|1|5|3

5

Weight1, Weight2|parent|sibling|LR|Node|Weight

Node Number

Data Elements|parent|sibling|LR|Node|Weight

Node Number

Counter
Chunk

Data Chunk

Freq=1

Freq=2 Freq=3

Level 0

Level 1

Level 2

Fig. 1: Example of proposed dynamic integrity tree structure

For n4, the attributes are: p4 = 3, s4 = 5, LR4 = 0, f4 = 2,
NE4 = 2, w4 = NE4 ∗ f4 = 4. Since the tree structure
is different from a fully balanced tree where the location of
the parent of a child node ni can be easily computed by

⌊
i
2

⌋
,

for the proposed integrity tree we need to explicitly store the
parent and sibling node numbers for each node. CC stores the
weight of its two children instead of data symbols. Its own
weight is the sum of the weights of its children. In Fig. 1, n3

is a CC. It stores the weight of its children (i.e. n4, and n5)
and its own weight, w3, is 7 (i.e 3 + 4). The same goes for
n1 which is also a CC. Note that n5 with f5 = 3 is placed
at level 2 as compared to n2 with f2 = 1, which is placed at
level 1. This is because w2 is greater than or equal to w4 and
w5.

The proposed tree structure incurs an additional memory
overhead in the form of a look-up-table (LUT) on chip as
shown in Table I. This is required to identify where each
element is stored. Unlike the fully balanced tree structure,
where each element was stored in the same order as it occurs
in the application following a natural sequence, this tree stores
elements based on the frequency of accesses. The LUT stores
the node number along with an element number (to indicate
which element it belongs to in the particular set). If the number
of nodes of the tree is n, the memory overhead of the LUT is
(3 ∗ log2 n).

TABLE I: Look Up table

Index Node No. Element No.

1 {0} 4 1
2 {1} 4 2
3 {1} 2 1
4 {5} 2 2
5 {6} 5 1
6 {8} 2 3
7 {9} 2 4

V. PROPOSED FRAMEWORK FOR DYNAMIC TREE
CONSTRUCTION

The proposed framework for dynamic tree construction is
adapted from [12] and is shown in Algorithm 5. The tree is
initialized with a single node consisting of all the data symbols
as its members and frequency 0. Whenever any data element
is requested by the processor, its frequency increases by 1
which triggers the process of tree update. During the course
of execution, whenever there is a memory request from the
processor, verification steps are performed to ensure that the
data read from the memory has not been tampered with. For
a read request, we match the address with a LUT, as shown
in Table I, and attain the node number corresponding to its
position in the tree. This is followed by verifying all the nodes
on the path in the tree to the root. Once verified, data is passed
to the processor. Next, set migration is undertaken where the
symbol is migrated to a new node set that matches its new
frequency. A similar procedure is adopted for a write request.
Once migration is complete, we check the tree for imbalance
based on some criterion. If there is an imbalance in any part
of the tree, we move the nodes to rebalance the tree [12].

An important question is when should the tree be rebal-
anced. The criterion used in [12] is:

Algorithm 1: Dynamic Skewed Tree

begin
Initialize tree with single node set having all data elements
while (1) do

if read request(addr) then
n←LUT(addr)
ReadNCheck(n)
Set Migration(n)
Update LUT

end
if write request(addr) then

n←LUT(addr)
WriteNUpdate(n)
Set Migration(n)
Update LUT

end
Rebalance flag ← rebalance check(n);
if Rebalance flag then

Shift up(n);
end

end
end

Algorithm 2: Dynamic Tree

begin
while (1) do

if read request(addr) then
if addrv̇ulnerable 1̄ then

ReadNCheck(addr)
end
read(addr) Check criterion for add(addr) if true
then

addrv̇ulnerable 1̄ add to tree(addr)
end

end
if write request(addr) then

n ← LUT(addr)
WriteNUpdate(n)
Set Migration(n)
Update LUT

end
Rebalance flag ← rebalance check(n);
if Rebalance flag then

Shift up(n);
end

end
end

if (wi > (wsi + 1) ∧ (wi > wspi
)) then rebalance

The above criterion states that if the weight of a node is
greater than the weight of its sibling node by at least 2 and
is greater than the weight of its uncle node then it should be
relocated.

The procedures used in Algorithm 5 are described below in
greater detail. For a read, ReadNCheck is performed and for
a write, WriteNUpdate is performed.

• ReadNCheck: The DC is loaded from memory and de-
crypted while the corresponding parent CC is fetched
to match the weights for verification. If the two values
match, we proceed to the next level. The remaining
branch authentication until the root is undertaken and in
case of any weight mismatch, a warning is sent to the

processor else the data is passed to the processor. Once
passed, the data is now migrated to a new set with higher
frequency and the tree is checked for any imbalance.

• WriteNUpate: The DC to be updated is first authenti-
cated using the ReadNCheck process following which
the DCs data symbol is updated. All loaded chunks are
authenticated before being updated. Once updating is
complete the new data is migrated to a new set with
higher frequency. The tree is then rebalanced if necessary.

The dynamic tree algorithm performs two other operations
to restructure itself: Set migration, and Rebalancing.

• Set Migration: Migration happens when a data element
moves from one set to another. Essentially, our approach
aims to group elements with the same frequency. Thus,
whenever an element is accessed, it has to be migrated
to a new set with a higher frequency (current frequency
+ 1). If such a set does not yet exist, a new set is created
with that element being its first member. The algorithm
is described in Algorithm 3.

• Rebalancing: The nodes are relocated whenever a region
in a tree becomes imbalanced. If a certain node has
higher weight than its neighbouring nodes then it must
be relocated to a higher level in the tree. The algorithm
is described in Algorithm 4.

Rebalancing shifts the nodes with higher probability of oc-
currence closer to the root. This is achieved in two steps as
illustrated in Fig. 2:

• Exchanging sub tree with its uncle
• Rotation

AB

C

B C

A

B A

C

(a) (b) (c)

Fig. 2: Shifting up sub tree C: a) Exchanging C with uncle
A, (b) rotation, (c) final state

Each time an element is accessed, it’s frequency increments
and this triggers the migration process in Algorithm 2. If the
rebalancing criterion is satisfied after migration, the shift up
operation is performed. Note that in Fig. 2, A, B, and C are
all sub trees and not single nodes. The operation of migration
for an element has a total time complexity of O(lg k) in the
worst case, where k is the cardinality of the set. The update
procedure can also be done in logarithmic time as discussed
in [12].

A. Implementation Example
We consider the example in Fig. 1 with the following

data symbols: {0,1,1,5,6,8,9}. Suppose that the elements are
accessed in the following order: {0,1,1,5,6,8,9,6,0,1,6,1,6}.
Note that all the 7 elements are accessed once in the beginning.
Thus we begin our tree design with a single set consisting of
all the elements and frequency 1 as can be seen in n2 on

Algorithm 3: Set Migration {a : data element}

begin
Q, P : pointers to Nodes
P ← find (a)
Q ← find (P’s frequency +1)
if Q 6= ∅ then

remove a from P’s set
P’s weight = P’s weight - P’s frequency
add a to Q’s set
Q’s weight = Q’s weight + Q’s frequency
ShiftUp (Q)
if P =∅ then

remove P from the tree
end
else

ShiftUp(P’s Sibling)
end

end
else

create a new node T
T’s right child is a new node N
T’s left child is P
N’s set =a
N’s weight =P’s frequency +1
N’s frequency = P’s frequency +1
replace the old P in the tree by T
remove a from P’s set
P’s weight = P’s weight -P’s frequency
if P =∅ then

remove P from the tree
end
else

ShiftUp(P’s Sibling)
end
ShiftUp (T)

end
end

Algorithm 4: ShiftUp {T : pointer to node}

begin
while T is not the root do

T’s weight = T’s right child weight +T’s left child
weight

if (T’s weight > T’s sibling weight +1) ∧ (T’s weight
> T’s uncle weight) then

Q ← parent of parent of T
exchange T with T’s uncle
exchange Q’s right and left children
update T’s ancient parent’s weight

end
T ← T’s parent

end
end

Tree 1 in Fig. 3. It has a weight of 7, with 7 elements each
having occurred once. From the access log we note the next
element being called is {6}. As currently there is no set with
frequency 2 we will need to create a new set. This is created in
Tree 2. As {0} and {1} are called, they are migrated from set
of frequency 1 to 2. This results in the tree structure shown as
Tree 4 consisting of 3 nodes, n3 with 3 elements and weight
6 and n2 with 4 elements and weight 4. Next, {6} is called
again. We will need to create another new node, this time

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 6 Tree 7
ni 1 2 1 2 3 1 2 3 1 2 3 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Data
Elements

0,7 0,1,1,
5,6,9,8 6,2 0,1,1,

5,9,8 6 5,4 1,1,5,
9,8 0,6 4,6 1,5,

9,8
1,0,
6 4,7 1,5,

9,8 4,3 0,1 6 4,8 1,5,
9,9 2,6 0 1,6 6,6 2,4 1,6 0 1,5,

9,8
pi 0 1 0 1 1 0 1 1 0 1 1 0 1 1 3 3 0 1 1 3 3 0 1 1 3 2
si 0 0 0 3 2 0 3 2 0 3 2 0 3 2 5 4 0 3 2 5 4 0 3 2 5 4
LRi 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
wi 7 7 8 6 2 9 5 4 10 4 6 11 4 7 4 3 12 4 8 2 6 12 6 6 2 4
NEi - 7 - 7 1 - 5 2 - 4 3 - 4 - 2 1 - 4 - 1 2 - - 2 1 4
fi - 1 - 1 2 - 1 2 - 1 2 - 1 - 2 3 - 1 - 2 3 - - 3 2 1

Fig. 3: Tree Migration and Rebalancing Steps

Algorithm 5: Add to tree

begin
Q, P, R : (pointers to Nodes)
R ← New (sub tree)
P ← find last added (sub tree)
if P.sibling == 0 then

P.sibling ← R
else

Q ← New parent node
Q.child ← P
Q.child ← R

end
end

with frequency 3. An additional step needs to be performed
i.e. we need to build a new counter chunk and the new node
of frequency 3 will be one of its children as can be seen on
Tree 5. Next {1} is called again. It will now migrate to n5.
The tree at this point can be seen as Tree 6 in Fig. 3. It now
needs rebalancing as n5 with weight 6 satisfies the shift up
criterion. After performing the tree shift up steps as shown in
Fig. 2, Tree 7 is obtained. In the final state, it can be seen that
the element {6} and {1} which are being called the maximum
number of times are placed closest to the root to reduce the
time required for runtime verification.

B. Custom Instructions
The NIOS II processor offers the capability of extending

the basic instruction set using custom instructions which are
realized as hardware accelerators that augment the ALU. In
order to reduce the latency of encryption/decryption during
memory integrity verification, we have implemented the 128-
bit mix-column AES algorithm as custom instructions. 32-bit
inputs are passed in a sequential manner to form 128 bit AES
inputs. AES encryption can be broken into the following major
functions: 1) Byte Substitution, 2) Skip Row, 3) Mix Column,
4) Add Round Key, 5) Key Expansion, and 6) Inverse Key
Expansion. The Altera tool chain created macros for all the
above routines.

C. Security Analysis
Spoofing attacks are detected by making use of the block

AREA scheme [13]. Under this scheme we add redundant data

(i.e. nonce) to our original data blocks before encryption. The
nonce is checked during the verification step after decryption.
The diffusion property of encryption engines makes sure that
any change on the data will be reflected after decryption as
the nonce obtained would have changed.

Splicing attacks are detected during the first stage of verifi-
cation. As the node number bits are stored in our nonce, any
mismatch associated with the node address used to fetch the
chunk and the bits extracted from the chunk would raise an
alarm.

Replay attacks are prevented due the property of the nonce
that is unique to each location. If an address is replayed, the
nonce values of the replayed version and the current version
will not match. Thus the attack would be detected at the first
non-replayed data block. If the entire tree is replayed, the last
verification step of matching the root node with the on chip
counter will trigger the alarm.

VI. EXPERIMENTAL RESULTS

We evaluate the performance benefits of the proposed
method using the Altera DE2 board and Qsys tool in Altera
Quartus II, v12.1. The system consists of NIOS II processor
operating at 50MHz, On-Chip Memory, JTAG-UART for con-
nection between the system and the board, SDRAM Controller
for using the SDRAM, Clock Series for DE-series Board
Peripherals, and performance counter unit for measuring the
performance statistics such as time elapsed and number of
clock cycles.

In our experiments, we ran six applications from the CH-
Stone and SNU Real Time testbenches with data set size varing
from 16-64. The applications are tested: 1) using a balanced
TEC tree), and 2) static skewed tree [11], 3) dynamic skewed
tree. The amount of performance gain achieved while running
the application will directly depend on the decrease in the
number of levels accessed for runtime verification. Fig. 4(a)
shows number of tree levels that are accessed for the various
methods considered. It can be observed that the proposed
dynamic memory integrity tree results in the least number of
levels accessed. On average the number of levels reduced by
35% compared to a balanced tree and 25% compared to the
static skewed tree. The performance overhead of the proposed

(a) (b)

(c) (d)

Fig. 4: Performance Evaluation: (a) Number of tree levels accessed (b) Time Overhead for running Dynamic
Tree (c) Comparison without Custom Instructions (d) Comparison with Custom Instructions

method for constructing and maintaining the dynamic tree is
shown in Fig. 4(b). On average the overhead constitutes to
about 30% of the total overall runtime.

Next, we measured the run time for all the six applications
on the different methods. The measurements were done both
with and without custom instructions. It can be observed that
despite the overheads of using the dynamic integrity tree,
we attained maximum runtime advantage compared to the
existing approaches. In particular, we observe on average an
improvement of 30% over a full balanced tree and an average
improvement of 20% over the static skewed tree, for cases
with and without custom instructions. The results are shown
in Fig. 4(c) and Fig. 4(d). The amount of gain varies with each
application and its memory usage pattern. Applications using
data sets with larger variance in the memory access frequencies
are expected to result in larger performance benefits. We
should note here that the run time has reduced considerably
using custom instructions, which is expected as AES algorithm
takes the bulk amount of time.

VII. CONCLUSION

The paper proposes an algorithm to construct a dynamic
skewed memory integrity tree. The tree is dynamically restruc-
tured based on runtime memory access patterns. Data symbols
that have the same frequency are placed together in a single
node on the tree. Nodes are relocated at runtime to make sure
that the nodes with higher frequency are placed closer to the
root. This reduces the time required for runtime verification
of the data accessed from the external memory. Experimental
results show improvement in runtime of 30% compared to the
conventional balanced tree approach.

REFERENCES

[1] Oksana Cherednichenko, AA Baranov, and TI Morozova. Side-channel
attack. 2013.

[2] Ross Anderson. Security engineering. John Wiley & Sons, 2008.
[3] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B Lee,

Nachiketh Potlapally, and Lionel Torres. Hardware mechanisms for
memory authentication: A survey of existing techniques and engines.
In Transactions on Computational Science IV. Springer, 2009.

[4] Ronald Mraz. Secure blue: an architecture for a scalable, reliable
high volume ssl internet server. In Computer Security Applications
Conference, 2001. ACSAC 2001. Proceedings 17th Annual, pages 391–
398. IEEE, 2001.

[5] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. Architectural support
for copy and tamper resistant software. ACM SIGPLAN Notices,
35(11):168–177, 2000.

[6] Shay Gueron. A memory encryption engine suitable for general purpose
processors.

[7] Tamara Silbergleit Lehman et al. PoisonIvy: Safe speculation for secure
memory. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, oct 2016.

[8] G Edward Suh et al. Aegis: A single-chip secure processor. Information
Security Technical Report, 10, 2005.

[9] Reouven Elbaz et al. Tec-tree: A low-cost, parallelizable tree for efficient
defense against memory replay attacks. In International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2007.

[10] Siddhartha Chhabra and Yan Solihin. Green secure processors: towards
power-efficient secure processor design. In Transactions on computa-
tional science X. Springer, 2010.

[11] Saru Vig, Tan Yng Tzer, Guiyuan Jiang, and Siew-Kei Lam. Customiz-
ing skewed trees for fast memory integrity verification in embedded
systems. In VLSI (ISVLSI), 2017 IEEE Computer Society Annual
Symposium on, pages 213–218. IEEE, 2017.

[12] Steven Pigeon and Yoshua Bengio. A memory-efficient adaptive
huffman coding algorithm for very large sets of symbols. In Data
Compression Conference, 1998. DCC’98. Proceedings, page 568. IEEE,
1998.

[13] Claude E Shannon. A mathematical theory of cryptography. Memoran-
dum MM, 45, 1945.

