
1

Customizing Skewed Trees for Fast Memory
Integrity Verification in Embedded Systems

Saru Vig, Tan Yng Tzer, Guiyuan Jiang and Siew-Kei Lam
School of Computer Science and Engineering, Nanyang Technological University, Singapore

Abstract—Memory integrity in embedded systems has been
a longstanding issue in trusted system design. Existing schemes
perform runtime integrity verification using memory integrity
trees in order to secure untrusted external memories from
malicious attacks e.g. replay, spoofing, and splicing. However,
the balanced memory integrity trees used in existing approaches
lead to excessive memory access overheads during runtime
verification. In this paper, we proposed a framework to construct
customized integrity trees based on the memory access patterns
of the application. The framework relies on an offline process to
analyze the frequency of data accesses and utilizes the package
merge algorithm to generate a skewed memory integrity tree
based on the frequency pattern. To the best of our knowledge, our
work is the first to propose an automated approach for generating
customized memory integrity trees. We validated the effectiveness
of our approach on the Altera NIOS II processor with an external
DRAM. Experimental results based on applications from widely
used CHStone and SNU Real-Time benchmarks demonstrated
that the proposed approach can lead to an average performance
gain of 18% compared to the case where balanced memory
integrity trees is used. To provide for further performance
improvement in integrity tree verification, we implemented the
encryption/decryption operation using custom instructions on
the NIOS II processor. This resulted in an additional 10x
performance improvement for the applications considered.

I. INTRODUCTION

Embedded systems have become an integral part of our
everyday lives. Due to our high dependability on such systems
it is becoming more crucial that they are secure and cannot be
tampered with. Recent foray of security features in commercial
embedded processors reflect the growing concerns of security.
However, these security features cannot extend fully beyond
the processor core to guarantee secure storage in external third
party memories, therefore exposing the vulnerability of the
system to memory attacks. This is a major concern as the
motive of almost all attacks is leakage or modification of
information, making memory an obvious target. Memories are
also very vulnerable as they are hard to audit and almost never
visible to the software.

A common way to tamper external memories is through
Bus Attacks. Such attacks replace external memories with
malicious content. Typical bus attacks are splicing, spoofing,
and replay [1]. Another type of attacks that are prevalent today
is Side Channel Attacks [2]. Such attacks are mounted to
observe the system during run time for minute details such as
power consumption, timing etc. By analyzing these statistics ,
the attacker can decipher cryptographic keys used to encrypt
the data, hence leading to loss of data confidentiality.

Almost all techniques used for memory protection include
some form of encryption and an integrity tree as part of

The research described in this paper has been supported by the Academic
Research Fund (AcRF) Tier1, Ministry of Education, Singapore under grant
number RG166/15.

CC1
1

CC2
2

CC3
3

CC4
4

CC5
5

CC6
6

CC7
7

DATA2
9

DATA8
15

DATA7
14

DATA6
13

DATA5
12

DATA4
11

DATA3
10

DATA1
8

Fig. 1: Fully balanced memory integrity tree

CC1
1

CC2
2

CC3
3

CC4
6

CC5
7

CC6
10

CC7
11

DATA2
5

DATA8
15

DATA7
14

DATA5
12

DATA6
13

DATA4
9

DATA3
8

DATA1
4

Fig. 2: Skewed memory integrity tree

the basic framework. The common assumption made is that
anything stored on chip cannot be tampered with. Memory
encryption deals with encrypting the contents of the main
storage with a cryptographic key that is securely stored on-
chip. Integrity tree based techniques (see example in Fig. 1)
split the memory into equal sized blocks Datai, where i
= 1, 2, ..., n is the node number on the tree. Data blocks
form the leaf nodes of an A-ary tree. The remaining nodes
are created by recursively applying a primitive authentication
function over the memory blocks until a single root node CC1
is obtained. The root CC1 is securely stored on chip and it
represents the present state of the system. Thus any tampering
can be detected at runtime if the root value does not match
the value stored on chip.

The tight energy constraints imposed on battery-powered
embedded devices presents a significant challenge for adopt-
ing strong memory security schemes. For a fully balanced
integrity tree the number of checks to verify the integrity of
each memory block during read accesses and the number of
tree updates for each memory block during write accesses
correspond to the number of tree levels, which is log2 n
for a fully balanced integrity tree. The additional memory
accesses required for runtime verification for a fully balanced
integrity tree therefore result in high computational overhead
and contribute to excessive energy consumption particularly
when the data size n is large.

In this paper, we proposed a framework to construct skewed
integrity trees based on the memory access patterns of the
application. It is a well known observation that applications
running on embedded systems spend 90% of its time on
10% of the code [3]. As such, most embedded applications

2

have deterministic execution patterns which can be leverage
upon to generate application-specific skewed integrity trees.
To the best of our knowledge, our work is the first to propose
an automated approach for generating customized memory
integrity trees based on the application characteristics. The
proposed framework relies on an offline process to analyze the
frequency of accesses. Using the example in Fig. 1 and 2, let’s
assume that the offline profiling process reveals that Data1
and Data2 are accessed more frequently. The package merge
algorithm is then employed to generate a skewed memory
integrity tree based on the frequency of access. In the example
shown in Fig. 2, the most frequently accessed data are placed
at higher levels of the integrity tree. Since runtime verification
for the frequently accessed Data1 and Data2 require lesser
number of memory accesses (due to less number of levels
to reach the root node CC1), the computational overhead of
runtime verification is significantly reduced compared to the
balanced tree in Fig. 1.

In order to demonstrate the effectiveness of our approach,
we have implemented runtime data integrity verification on
the Altera NIOS II processor with an external DRAM which
stores the memory integrity tree. The approach can be adopted
for code integrity as well. Experimental results using applica-
tions from widely used benchmarks show that the proposed
method achieves an average performance improvement of 18%
compared to conventional approaches employing a balanced
memory integrity trees. Also, we implemented the AES al-
gorithm for encryption/decryption using custom instructions
on the NIOS II processor. This resulted in an additional 10x
speedup, which further alleviates the bottleneck of runtime
memory integrity verification.

This paper is organized as follows: Section II discusses
related work in memory security. Section III describes the
threat model and Section IV provides details of the modified
TEC tree. Section V describes the proposed framework, and
Section VI presents the experimental results. We conclude the
paper in Section VII.

II. RELATED WORK

Commercial processor-level security countermeasures typi-
cally define notions of trust zones or boundaries (or security
perimeters) across the various on-chip hardware resources
[4][5]. However the protection schemes in current trusted
computing platforms cannot extend fully beyond the processor
core to guarantee secure code/data storage in external third
party memories. This enables adversaries to mount active
attacks on memories such as cold-boot attacks by exploiting
memory remanence properties (to extract confidential infor-
mation), or perform replay, spoofing, and splicing attacks [6]
(to influence program execution or reveal data by changing
memory contents). Other attacks include passive bus snooping
to infer secret cryptographic keys by monitoring data transfers
between the processor and memory.

Successful memory security measures involve physical pro-
tection (to ensure memory hardware and media are not stolen
or damaged), minimizing the risk and implications of error,
failure or loss (e.g. developing a resilient back-up strategy), ap-
plying appropriate user authentication (e.g. employing strong
password scheme), as well as implementing the encryption
of sensitive data and/or cryptographic schemes for memory
authentication. In order to mitigate the security threats on
memories, secure architectures have been proposed with the
underlying assumption that the processor chip is secure and
off-chip devices (e.g. memories) are insecure [7]. To counter
physical attacks, all sensitive information that needs to be
transmitted from the secure processor (e.g. to external mem-
ory) are encrypted. A number of memory encryption schemes
have been proposed in [8]. These methods typically employ a
symmetric key cipher to encrypt data.

Memory protection from replay, spoofing, and splicing at-
tacks can be achieved through memory authentication schemes
that perform runtime integrity verification [6]. An integrity tree
is vital to such mechanisms due to the limited storage space
on-chip. Authentication methods like hash function, MAC, and
Block-level AREA are used to realize the integrity trees [1].
The root value of the tree is stored on chip and is assumed
to be safe and resistant to tampering. Existing integrity trees
techniques include HASH trees, PAT trees, and TEC tree [9].
Implementing such integrity trees steeply increases the run
time and memory usage of the application.

Intel’s SGX makes use of an integrity tree as part of its
Memory Encryption Engine to provide memory security [10].
It uses a slightly tweaked counter mode encryption along
with MAC as its primitive. Although the memory integrity
tree has been tailored to the architecture, there is still a
need to traverse all the levels of the tree for each read and
write operation to verify and match the tags due to the used
of a balanced tree. PoisonIvy has a similar architecture as
Intel’s SGX in terms of encryption and integrity tree but it
makes use of speculation to improve the performance[11].
The approach tracks the data and addresses that are sent to
the memory speculatively and ensures that no unverified data
escapes the chip. Merkle integrity trees are used in[12] where
data are processed in batches to reduce the on-chip storage,
thus improving on performance. The Merkle trees are built
using entire memory blocks and concatenation is employed to
increment the hash function for building the internal nodes.

While the above-mentioned methods have adopted methods
to improve the performance of runtime memory integrity ver-
ification, they still rely on a fully balanced memory integrity
tree which suffers from significant performance overheads
due to the need to traverse all levels of the tree for each
memory access. As discussed in [6], the utilization of balanced
memory integrity tree account for excessive memory accesses
which contribute to the largest fraction of energy consumed
in embedded processors. As such, these methods are often
infeasible for embedded systems with tight energy constraints.
Thus, run-time integrity checking has been identified as one of
the main open issues for trusted computing in mobile devices.

A. Main Contribution
The work in[13] discusses the advantages of using a skewed

tree to improve performance. But to the best of our knowledge
no effort has been undertaken to construct skewed memory
integrity trees in a systematic and application aware manner.
The main contribution of this paper is a framework that can
automatically generate an application-specific skewed mem-
ory integrity tree based on the application characteristics.
We demonstrate that runtime verification using the proposed
approach outperforms an existing balanced memory integrity
tree approach on the Altera NIOS II processor with external
DRAM. In addition, we show that by exploiting custom
instructions to accelerate the encryption/decryption operation,
we can substantially reduce the performance overhead of
runtime integrity verification. It is noteworthy that the pro-
posed methods can complement those adopted in [12][6] for
improving the performance of memory integrity verification.

III. THREAT MODEL

The main focus of this work is to prevent bus attacks.
Similar to previous works, our threat model assumes that
data stored on chip is secure and is resistant to all kinds of
attacks. We are concerned with attacks that tamper the memory
and/or processor bus and thus are able to observe and inject
manipulated data. Side channel and leakage attacks are beyond
the scope of this work. The attacker can choose to tamper the
data with any of the following active attack mechanisms:

3

• Spoofing: Attacker exchanges a memory block with a
tampered one.

• Splicing: Attacker replaces the memory block at address
A with a memory block at address B where A 6= B.

• Replay Attacks: Attacker records data at an address and
inserts it at the same address at a later point in time. Thus
the present value of the data is replaced by an older value.

IV. CUSTOMIZED TEC TREE

In this section, we will introduce the modifications made to
the TEC-tree [8] to enable the construction and deployment of
a customized skewed memory integrity tree. We have adopted
the TEC tree in this work as it provides for data confidentiality
unlike other memory integrity trees such as PAT and Merkle
trees [9]. It is worth mentioning that the proposed method
for customizing memory integrity tree can be applied to all
existing memory integrity trees. We will provide security
analysis for the modified TEC tree in this section.

9|8|1|17

5|4|2|9

EMPTY EMPTY

EMPTY EMPTY EMPTY EMPTY

5|3|3|8

3|2|6|5 3|0|7|3

EMPTY EMPTY 2|1|14|3 0|0|15|0

10
|2

|0
|16

|5

7
|2

|1
|1

7
|4

1
|14

|0
|20

|2

1
|14

|1
|21

|1

2
|6

|0
|1

8
|3

1
|6

|1
|1

9
|2

0
|15

|0
|22

|0

3
|15

|1
|22

|0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2

754

1511 121098

3

6

13 14

Level 1

Level 3

NodeCounter
ChunkNode Number DataData

 Chunk

Nonce

Count 1 Count 2 Node CountData Parent LR Node Count

Nonce

Level 0

Level 4

Level 2

Fig. 3: Example of a modified TEC Tree

A. Modified TEC Tree
The original Tamper Evident Counter (TEC) Tree is a fully

balanced memory integrity tree which uses as primitive, Block-
level AREA, combining both encryption and authentication
into one operation. A nonce (a number used only once), which
consists of a counter value representing the number of writes
to that location, is generated and concatenated onto every data
block and the resulting block, called the Data Chunk (DC), is
then encrypted using AES algorithm with a symmetric key
cipher operating in Electronic Code Book Mode (ECB). The
nonces are then combined into new blocks, called the Counter
Chunks (CC), and the procedure is repeated up to the root,
forming a tree structure. The final nonce value (root) is held
on chip in secure storage. Thus the verification of a memory
block traverses a path consisting of a DC and their parent CC’s
at different levels until it terminates at the root level in a final
CC whose counter value is stored on-chip. In our work, we
have fixed the arity, number of children of each node, as 2.

Note that a truly skewed tree implementation as in Fig. 2 in-
creases the complexity of tree traversal since the determination
of the location of the parent node (or their memory address) for
child node i cannot be easily achieved with

⌊
i
2

⌋
. Our approach

is to still maintain a physical balanced tree in the memory,
but allow for empty nodes between the leaf nodes and their
respective parents in order to emulate a skewed tree structure.
Hence, in the modified TEC-tree implementation, the parent
node may not necessarily be connected directly to the child
nodes in the tree even though we are effectively utilizing a

balanced tree structure. Specifically, we still place DC’s on leaf
nodes but while performing verifications, the parent node may
be accessed by skipping some levels in the tree. This requires
a different method for calculating parent node (address) of the
leaf nodes. Essentially, our approach relaxes the restriction
imposed on fully balanced trees that necessitates tree traversal
to be performed at all levels of the tree for each memory block.
Numbering the nodes in the same manner as a balanced tree
simplifies the calculation of the parent address for any given
node. Except for the leaf nodes, the parent of any node i can
still be calculated as

⌊
i
2

⌋
. The parent node numbers of the leaf

nodes are directly stored in the DC (as shown in Fig. 3). This
enables the parent node of the leaf nodes that are separated
by multiple levels to be accessed directly. We illustrate the
modified TEC-tree using the example in Fig. 3 with 8 leaf
nodes, whose parent nodes are located at different tree levels.
It is evident that the runtime verification of Node 16 and
Node 17 requires only two accesses of CCs (i.e. Node 2 and
Node 1). The dotted line represents the first jump that nodes
take to reach their respective parents. Compared to the fully
balanced tree implementation, the modified TEC-tree enables
the skipping of two levels of the tree during verification of
Node 16 and Node 17.

In order to implement the modified TEC-tree, we need to
introduce additional information in the DCs as shown in Fig. 3
(Note that the format of the CCs in Fig. 3 is the same as [8]).
In particular, we have included two extra fields in DC i.e.
Parent and LR. The Parent field specifies the parent node
while LR indicates the child position i.e. which node is left or
right child of its parent. The Data field has the actual data. The
Node and Count fields are concatenated to form the nonce.
Node is the node number of the tree and Count represents
the number of write operations on that particular node. As the
node number is specific to each node of the tree the nonce
for each node is unique. The CC has two fields Count1 and
Count2 which store the Count values of its right and left
child respectively. The nonce of the CC is formed in the same
manner as a DC. For example, Node 16 has 2 stored in its
parent field meaning that node 2 is its parent. Node 16 being
the left child of Node 2 has its LR bit as 0 and similarly for
node 17, also the child of node 2, the LR bit is 1. The Count
field at node 16 i.e. 5 is the Count1 placed at node 2 and
similarly the Count of node 17 i.e. 4 is placed at the Count2
field of node 2. The Count value of node 2 represents the
writes made on all of its children and hence, is set to 9.

The memory access overhead caused due to the CC’s
and DC’s has been discussed in [8], that is m =
l + ((d+ count) ∗Arity)

(l ∗ (Arity − 1))
, where l is the size of data and

d is the number of bits used to represent that address as can
be seen in [8].The additional storage required for a skewed
tree over a balanced tree is m′ = (log2(n) + 1) ∗ d, n being
the number of data elements. As the table is being stored in
external memory, this additional storage requirement does not
pose a serious concern.

The following steps are performed for reading and writing
to the memory blocks of the modified TEC-tree. For a read,
the ReadNCheck function is performed and for a write, the
WriteNUpdate function is performed.
ReadNCheck: When a DC is read from the memory, it

is first decrypted and the corresponding parent is extracted.
Based on this, the parent CC is fetched and decrypted to obtain
the corresponding counter value Count. If the Count of the
CC and DC matches, the authentication will be repeated at
the next level. From this point onwards, the parent node of i
can be determined using

⌊
i
2

⌋
. The verification is performed

up till the root if there is no mismatch in the Count values at
any level. Should there be a mismatch we terminate the read
access. If the Count at the root node matches with the value
stored on chip, the authentication is successful.

4

WriteNUpdate: During a memory write operation, the
DC to be updated is first authenticated with the help of the
ReadNCheck function described above, and then updated by
overwriting the data. For updating the block it is first decrypted
and the data part of DC is extracted and replaced with the new
data. The Count value in the DC is then incremented by one.
Updating of Count values is recursively performed from the
parent CC up till the root.

B. Security Analysis
The modified TEC-tree provides countermeasures for spoof-

ing, splicing, and replay attacks. We also maintain the confi-
dentiality by encrypting the data using AES algorithm. We
use a block size and key of 128 bits (probability of a
successful attack is extremely low i.e. 1/2128). The key used
for encryption is securely stored on chip. The AES mode used
is Electronic Code Block (ECB). This enables each block to
be processed independently thus reducing the granularity of
integrity verification. Only one cipher block is loaded and
decrypted for one load/store instruction. The only drawback
is that it produces the same ciphered text each time for a
particular data but we overcome this limitation by using a
nonce which makes each ciphered chunk unique.

Data is protected by making use of the block level AREA
scheme. This schemes makes use of Shannon’s diffusion
property[14] to add some redundant data to the actual data
before encryption and to check it each time after decryption.
This is the motivation for adding a nonce to the data to form a
data chunk. Once the chunk is encrypted, the data and nonce
cannot be differentiated. For a a-bit nonce, the probability that
the last a bits remain same after tampering is 1/(2a).

In our tree, a nonce is formed by concatenating address and
count i.e. a-bit nonce = d-bits of address + r-bit of count.
This makes sure that the nonce is unique for each location.
The probabilities of a successful attack for our given threat
model are as shown in Table I

TABLE I: Security Limitations
Attacks Spoofing Splicing Replay

Time (Sec) 1/2a 0 1/2r

Spoofing attacks are detected by making use of the block
AREA scheme. The nonce is checked during the verification
step after decryption. Any change on the data will be reflected
and the last a bits obtained would have changed. This mis-
match would raise an alarm in the system and the data will not
be passed to the processor. The probability is derived directly
from the use of block AREA scheme as explained earlier.

Splicing attacks are detected during the first stage of veri-
fication. As the address bits are stored in our nonce, if there
is a mismatch between the address used to fetch the chunk
and the bits extracted from the chunk, then the data would not
be processed further and an alarm would be raised. Thus, a
32-bit address space is completely protected from attacks if
we allocate 32 bits to the address segment of the nonce.

Replay attacks are prevented due to the property of unique-
ness of the nonce. If an address is replayed, the count values
of the replayed and the current version will not match. The
probability for a successful attack is directly dependent on the
length of the count used in the nonce. The attack would be
detected at the first non-replayed data block. If the entire tree
is replayed, an alarm would be raised at the last verification
step of matching the root node with the on-chip counter.

V. PROPOSED FRAMEWORK

The framework consists of two parts: (i) offline profiling for
weight calculation and tree formation, (ii) online verification.
In this paper, we demonstrated the proposed method for data
integrity protection. It is noteworthy that the method can be
easily extended for code integrity protection through assembler
modifications for loading the code integrity tree into memory.

Fig. 4: Package Merge Algorithm

A. Profiling
Application profiling is performed by running the appli-

cation to extract all the data memory addresses whenever a
read or write operation is performed on the data. Through
this process we calculate the frequency of accesses for each
memory address. Based on this information we can calculate
the weights of each data using Equations (1) to (3).

B. Weight Calculation
Weights are calculated based on the amount of time it

requires to perform a read and write operation. For a read,
verification is performed at each level. Thus the time required
depends on L. Furthermore, at each level we need to extract
the Count value of both the node and its parent to perform
verification, this requires decryption to be performed for both
the nodes. Both these sums up to form the ReadNCheck
weight in Eq (2). WriteNUpdate can be divided into two
parts: 1) ReadNCheck, and 2) Updating. A write operation
on any memory location is performed only after it has been
ensured that the location has not been tampered with before,
requiring an additional ReadNCheck step. Updating can
further be broken down into two parts: 1) Updating the DC,
and 2) Updating the CC. Updating the DC requires overwriting
the data and Count of the node. Thus we need to first decrypt
the node and extract the required fields, update them, and
encrypt the node. Updating the CC has to performed at all
the remaining levels i.e. L − 1. To update the Count value
of a CC we also need to extract the updated Count value
from its child, so as to make sure they match. Thus an extra
decryption is performed for this step at each level. The time
spent at each level during a read and write can be calculated
using the formulae given below. L - number of levels of the
balanced tree for a given number of data; t upDC - time to
update a Data chunk; t up CC - time to update the Counter
Chunk; t d - constant time needed for decryption using AES
algorithm; t e - constant time needed for encryption using
AES algorithm.

Weight = ReadNCheck +WriteNUpdate (1)

ReadNCheck = (L) ∗ (2 ∗ t d) (2)

WriteNUpdate = ReadNCheck + t up DC + t up CC
(3)

t up DC = t d+ t e (4)

t up CC = (L− 1) ∗ (2 ∗ t d+ t e) (5)

C. Tree Formation
Once our weights have been calculated we need to place the

nodes on different levels of the tree so as to maximize the gain.
For this purpose, we adopt the package merge algorithm [15]
to construct our skewed memory tree and place the nodes in
memory prior to running the main application code. The time
complexity of this algorithm is O(nL), where n is the number

5

of nodes and L is the number of levels of the tree. We initially
sort the weight in an increasing order and then the problem
can be solved in linear time. The pseudo code used to perform
the calculations is shown in Algorithm 1.

Algorithm 1: PACKAGE MERGE ALGORITHM (I,X)

begin
S ← φ
for all I ,Ll ← list of items of width 2−l, sorted by weight
while (X ≥ 1) do

minwidth= smallest item in the diadic expression of X
if I =φ then

return ”No Solution”
end
else

l ← the minimum such that Ll is not empty
r ← 2l

if (r ≥ minwidth) then
return ”No Solution”

end
else

if r = minwidth then
Delete the minimum weight item from Ll and insert it

into S
X ← X − S

end
end
Pl+1 ← PACKAGE(Ll)
discard Ll

Ll+1 ← MERGE(Pl+1, Ll+1)
end

end
return S is the optimal Solution

end

A nodeset I is described as a set of ordered pairs (i,l) where
1 ≤ i ≤ n and 1 ≤ l ≤ L. i being the node number and l
representing the level of the node on the tree. We will use the
notation li to denote the level of node i. Width is defined as
2−l and weight of each node is a non negative number which
in our case describes the frequency of data access. X is a non
negative number denoting the totalwidth i.e.

∑n
i=1 2

−li . We
should note here that X ≤ 1 will give us a prefix free code
as our solution is S. Given a prefix free code it is straight
forward to create process a binary tree.

D. Implementation Example
We design a tree for the following data consisting of 8

data elements (i, j) where i is the data and j is the weight
associated with its memory location. The weights have been
calculated using Eq (1) to (3) as described in Section V-B as:
{(3,1);(0,1);(1,2);(1,2);(1,3);(1,3);(7,4);(10,4)}. The height of
the tree is 4. The package merge algorithm is performed on
the weights {1,1,2,2,3,3,4,4} as illustrated in Fig. 4.

The step PACKAGE is performed to form a list Pl+1 from
Ll by combining items in consecutive pairs, starting from the
lightest. Fig. 4 explains this step visually. The dotted pairs are
the packages that are formed. Thus the package P2 is formed
from list L1 on level 1 by combining the values of the dotted
pairs. Combining is done by simply adding up the weights of
the elements of each pair. Thus P2 is the sum of the elements
of all the dotted pairs on L1 i.e.{2,4,6,8}. The MERGE step
is the usual merging of two sorted lists. The successive lists in
Fig. 4 are formed by performing the MERGE step. In general,
the list Ll is created by forming package list, Pl, from list Ll−1
and merging it with a copy of the first list developed. As shown
in Fig. 4, L2 is formed by merging P2 (i.e. {2,4,6,8}) and
the original elements i.e. {1,1,2,2,3,3,4,4}. The dotted line in
Fig. 4 points to the sum of each package. The number of times
the PACKAGE and MERGE steps are performed depends on
the height, L, of the tree.

To get our desired solution we define a term active leaves
as the first 2 ∗ n− 2 items on the last list. This represents the

number of times the while loop in Algorithm 1 will run. The
rationale behind this is to make sure we get X ≤ 1. We process
the active leaves to get our solution. The solution is stored in
the list S=[si] i ∈ 1...n and 1 ≤ si ≤ L. si is set to the number
of active leaves corresponding to each original element. The
active leaves for our example are the first 14 elements on list
5. They have been shaded in Fig. 4 and corresponding to each
of them si has been counted. The solution is {4,4,4,4,3,3,2,2}.

The final solution as depicted in Fig. 3 obtained using this
calculation is the level each item should be placed for a 4-
level 2-ary tree. Items with weight {1,1,2,2} (i.e. Node 20 -
Node 23) should be placed at level 4 and their parent are thus
placed at level 3. Items with weight {3,3} (i.e. Node 18 and
Node 19) should be placed at level 3 and thus the nodes on
level 2 are their parents. Items with the maximum weight (i.e.
Node 16 and Node 17) should be at level 2 (closest to the
root) and hence their parent are placed on level 1, making the
highest jump, skipping two levels.

We should note here that to run the package merge algorithm
we must know the optimal height of our tree. Skewing the
tree will in most cases end up increasing the height. For
every level that is increased some paths get shorter and some
get longer. Thus skewing a tree beyond a certain height can
degrade performance. To calculate the most optimal height we
make use of a theorem stated in [16], i.e. the upper bound for
the height of an optimal weighted path length is 2 +H for a
binary tree. H is the entropy of the frequency distribution of
the data nodes. We use this theorem to determine the height of
our skewed tree. Running the design on the upper bound is a
safe option and gives us a fair estimate to evaluate the design.
It is worth mentioning that this theorem is only applicable
to binary trees i.e. trees with arity 2. If we extend this work
on trees with higher arity we will need to adopt some other
heuristic measure to find the most optimal height.

E. Custom Instructions
The NIOS II processor offers the capability of extending

the basic instruction set using custom instructions which are
realized as hardware accelerators that augment the ALU. In
order to reduce the latency of encryption/decryption during
memory integrity verification, we have implemented the 128-
bit mix-column AES algorithm [17] as custom instructions.
Since the NIOS II custom instruction interface are restricted to
two 32-bit inputs and one 32-bit output port, the 128-bit AES
input must be separated into 32-bit wide segments and passed
to the custom instruction module in a sequential manner. An
additional input signal is used to indicate which segment needs
to be passed to the custom instructions. The Altera tool-chain
automatically creates macros which can be used to call the
custom instructions from the application code. We generated
macros for the following functions of the AES algorithm: 1)
Byte Substitution, 2) Skip Row, 3) Mix Columns, 4) Add
Round Key, 5) Key Expansion and 6) Inverse Key Expansion.

SDRAM

Memory
Integrity

Tree

On-Chip
DATA

memory
(key and Root

Nonce)

Instruction
Memory

NIOS II

CUSTOM
INSTRUCTION

(AES)

SDRAM
Controller

AVALON BUS

TRUSTED UNTRUSTED

Fig. 5: System overview

VI. PERFORMANCE EVALUATION

We evaluated the performance benefits of the proposed
method using the Altera DE2 board and the Qsys tool in

6

Fig. 6: (a) Performance gain in comparison to a balanced tree, and (b) Improvement with Custom Instructions

Altera Quartus II, v12.1. The system consisted of a NIOS
II Processor operating at 50MHz, On-Chip Memory, JTAG-
UART for connection between the system and the board,
SDRAM Controller for using the SDRAM, Clock Series for
DE-series Board Peripherals, and Performance Counter Unit
for measuring the performance statistics such as time elapsed
and number of clock cycles.

In our experiments, we ran six deterministic applications
from the CHStone and SNU Real Time testbenches. The
applications are tested: 1) using a balanced TEC tree, and 2)
using the modified TEC tree as described in Section IV. We
measured the time required to run the benchmarks. The tests
were done using two different data sets to get a fair estimate of
performance. Data set 1 was part of the original test-benches.
Data Set 2 is synthetically generated using random values and
have twice the size of Data set 1. Each data set was initially
profiled offline for weight calculations. The results after testing
are shown in Fig. 6(a). A significant performance improvement
of 18% can be observed when the skewed memory integrity
generated by our framework is used.

Note that the amount of gain will depend directly on the
kind of application and its memory usage pattern. Thus we
expect to see variation in the gain for different applications.
Applications dealing with data sets with larger variance in the
memory access frequencies are expected to result in larger
performance benefits.

The run time improvements by using custom instructions
for various applications using the proposed skewed memory
integrity tree are shown in Fig. 6(b). It is worth noting here
that the results have been plotted with a logarithmic y-axis.
It is evident that using custom instructions for implementing
the AES operation significantly reduces the overhead of em-
ploying memory integrity tree. In particular, there is a 10x
improvement in the performance before and after the custom
instructions were implemented. In addition when custom in-
structions are used in both the balanced tree and skewed tree,
the proposed skewed memory integrity tree could still achieve
16% performance improvement.

VII. CONCLUSION

In this paper, we presented a framework for generating
a customized skewed memory integrity tree based on the
frequency of memory accesses of the application. We modified
the TEC tree to allow for the more frequently accessed
memory blocks to traverse a shorter verification path. This
is achieved by including additional fields in the data chunk
to indicate the parent of the leaf nodes. We formulated the
weights to reflect the memory access overheads of read and
write operations, and utilized them to calculate the weights
of each memory block. The package merge algorithm was
adapted to place the weighted memory blocks in the skewed
tree so that memory blocks with larger weights will require
less verification steps. By implementing AES as custom in-
structions we were able to further reduce the runtime overhead.
The proposed framework can be extended for other types
of memory integrity trees. Experimental results based on

widely used benchmarks demonstrates the effectiveness of our
approach. Our future work includes extending the framework
to generate customized integrity trees with arbitrary arity, and
examine the effects of cache on it.

REFERENCES

[1] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, and
A. Martinez, “A parallelized way to provide data encryption and integrity
checking on a processor-memory bus,” in Proceedings of the 43rd annual
Design Automation Conference. ACM, 2006.

[2] T. Unterluggauer and S. Mangard, “Exploiting the physical disparity:
Side-channel attacks on memory encryption,” 2016.

[3] D. C. Suresh, W. A. Najjar, and J. Yang, “Power efficient instruction
caches for embedded systems,” in International Workshop on Embedded
Computer Systems. Springer, 2005.

[4] Arm trust zone. [Online]. Available: http://www.arm.com/products/
processors/technologies/trustzone/index.ph

[5] Microsoft palladium: Next generation secure computing base. [Online].
Available: https://epic.org/privacy/consumer/microsoft/palladium.html

[6] S. Chhabra and Y. Solihin, “Green secure processors: towards power-
efficient secure processor design,” in Transactions on computational
science X. Springer, 2010.

[7] G. E. Suh et al., “Aegis: A single-chip secure processor,” Information
Security Technical Report, vol. 10, 2005.

[8] R. Elbaz et al., “Tec-tree: A low-cost, parallelizable tree for efficient
defense against memory replay attacks,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2007.

[9] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and
L. Torres, “Hardware mechanisms for memory authentication: A survey
of existing techniques and engines,” in Transactions on Computational
Science IV. Springer, 2009.

[10] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” 2016.

[11] T. S. Lehman et al., “PoisonIvy: Safe speculation for secure memory,”
in 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, oct 2016.

[12] S. H. Kim et al., “Fully Batch Processing Enabled Memory Integrity
Verification Algorithm Based on Merkle Tree.” Springer, Cham, 2016.

[13] J. Szefer and S. Biedermann, “Towards fast hardware memory integrity
checking with skewed Merkle trees,” in Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and
Privacy - HASP ’14. New York, New York, USA: ACM Press, 2014.

[14] C. E. Shannon, “A mathematical theory of cryptography,” Memorandum
MM, vol. 45, 1945.

[15] L. L. Larmore and D. S. Hirschberg, “A fast algorithm for optimal
length-limited huffman codes,” Journal of the ACM (JACM), vol. 37,
no. 3, 1990.

[16] S. Nagaraj, “Optimal binary search trees,” Theoretical Computer Sci-
ence, vol. 188, 1997.

[17] H. Li and Z. Friggstad, “An efficient architecture for the aes mix
columns operation,” in Circuits and Systems, 2005. ISCAS 2005. IEEE
International Symposium on. IEEE, 2005.

